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a b s t r a c t

This work aimed to determine the effect of cysteamine (25, 50, 100 and 200 mM) incorporated during
dilution on frozen thawed buffalo semen quality. Semen was collected twice weekly for 7 consecutive
weeks from three Egyptian buffalo bulls using an artificial vagina. Semen samples were pooled and
extended with a Tris-based extender, cooled, equilibrated and finally frozen in liquid nitrogen. The
diluted semen was evaluated for motility, viability, morphology, plasma membrane and DNA integrity, in
addition to oxidative stress and in vitro fertilizing capability. The post thaw motility and velocity pa-
rameters noticeably increased with different concentrations of cysteamine (mainly 100 mM) during
different incubation periods. The post thaw sperm viability and normality significantly (p < 0.05)
improved with concentrations of 50 and 100 mM. Plasma membrane integrity substantially increased at
all concentrations of cysteamine. Cysteamine reduced alanine aminotransferase (at all concentrations),
aspartate aminotransferase (at 25e100 mM), and creatine kinase (at 100 and 200 mM). Cysteamine at a
concentration of 100 mM noticeably enhanced the total antioxidant capacity and glutathione peroxidase
and decreased nitric oxide production. Cysteamine, at concentrations of 100 and 200 mM, increased the
DNA intensity in the comet head (%) and decreased the DNA % in the comet tail. The comet tail length and
moment substantially decreased at concentrations of 50e200 mM. Cysteamine did not affect the in vitro
fertilizing capability of sperm. In conclusion, cysteamine incorporation (mainly at a concentration of
100 mM) in buffalo semen extender showed varying protective effects on different sperm parameters
against cryo-damage; however, it did not affect the in vitro fertilizing capacity of sperm.

© 2022 Published by Elsevier Inc.
1. Introduction

Cooling and/or freezing are milestones in semen processing. It is
well known that these processes are associated with the produc-
tion of reactive oxygen species (ROS), and an imbalance between
the produced ROS and the intracellular detoxification mechanism
results in oxidative stress damage [1]. The oxidative stress defense
mechanism is generally poor in buffalo spermatozoa; therefore,
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lipid peroxidation in the plasma membrane is tremendously high
[2]. Spermatozoa exposed to ROS suffer from depressed fertility
potential as a consequence of decreased viability, post thaw
motility, and intracellular enzymatic activity [3]. This fact encour-
ages researchers to implement supplements, which have antioxi-
dant properties, in semen extenders to overcome the detrimental
effect of cryopreservation [4]. Different biological (natural) and
chemical (synthetic) antioxidants that attack lipid peroxidation and
ROS [5] have been used to provide cryoprotective effects to sperm,
thus improving semen parameters, including sperm motility and
membrane integrity, after thawing [4].

Natural or enzymatic antioxidants include superoxide dismut-
ase, catalase, glutathione peroxidase and glutathione reductase,
which also cause the reduction of hydrogen peroxides to water and
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alcohol [1]. Synthetic or nonenzymatic antioxidants include vita-
mins and minerals such as vitamin C, vitamin E, zinc, taurine,
hypotaurine and glutathione [1].

Cysteamine (NH2-CH2-CH2-SH, b-mercaptoethylamine) is a
naturally existing low molecular-weight thiol compound that
modulates the endocrine and metabolic status of the animals [6]. It
plays a crucial role in the defensive mechanism against ROS by
improving the synthesis of glutathione (GSH) [7e9]. Cysteamine
increases the rate of cellular cysteine uptake through the formation
of mixed disulfides with cysteine. Thesemixed disulfides enter cells
via transport system and reduced intracellularly to release the two
thiol compounds [10]. The cysteine is then utilized in GSH synthesis
[9]. Glutathione is a large class of antioxidants agents, able to react
directly with many ROS by mean of its sulfhydryl group reducing
power and as co-factor for antioxidant enzymes [11,12].

The addition of cysteamine to the in vitro maturation/culture
media improved the rate of embryo development in cattle [13] and
buffalo [14]. Moreover, cysteamine incorporation in semen
extender before cryopreservation has different effects on the post-
thawing semen quality parameters in different species including
ram [15], buck [16], bull [3] and buffalo bull [17].

The aim of the present study was to investigate the effect of
cysteamine on cryopreserved buffalo semen characteristics, sperm-
free enzymatic and antioxidant levels and the in vitro fertilizing
capacity of cysteamine-treated sperm.

2. Materials and methods

2.1. Semen collection and processing

Three proven fertility Egyptian buffalo bulls aged 4e5 years
housed at the Teaching Farm, Faculty of Veterinary Medicine,
Moshtohor, Qalyubia Governorate, Egypt, were used in the current
study. Semen samples were collected twice per week from the
three buffalo bulls for 7 consecutiveweeks (n¼ 42 total collections)
with an artificial vagina maintained at 42e45 �C. Spermatozoa
activity, concentration and morphology were assessed microscop-
ically after holding the semen at 37 �C for 10 min. Samples that had
motility, livability and normality �70% and concentration
�800 � 106/mL motility were pooled and used as semen sources.
Pooled semen samples were diluted with Tris-based extenders (Tris
254 mM, citric acid 78 mM, fructose 70 mM, egg yolk 14% (v/v),
glycerol 6% (v/v), pH 6.8 with gentamycin sulfate, 500 mg/ml). In
details: pooled samples were evaluated for the total sperm con-
centration, and the volume the added extender was calculated to
obtain a final concentration of 60 � 106 spermatozoa/ml. Semen
was diluted using one step dilution method according to Del Sorbo
et al. [18]. Diluted semen was divided into 5 experimental groups
supplemented with cysteamine hydrochloride (M6500,
SigmaeAldrich Co.) at different concentrations, including 0 (con-
trol), 25, 50, 100 and 200 mM. Extended semenwas slowly cooled to
5 �C within 2 h, packed into polyvinyl midi-straws (Minitub, Ger-
many) and equilibrated for 2 h. After equilibration, semen under-
went a manual freezing according to Singh et al. [19] using
isotherm box. The straws were suspended in horizontal position on
a rack on liquid nitrogen vapor (5.5 cm above liquid nitrogen, N2)
for 10 min after which the straws were plugged in LN2 tank until
thawing. Frozen semen straws (n ¼ 4/group each time) were
thawed at 37 �C for 40 s for the different evaluations.

2.2. Semen quality evaluation

2.2.1. Assessment of sperm motility and velocity parameters
After thawing, semen was incubated at 37 �C, and the motility

and velocity parameters were evaluated at different incubation
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periods, including 0, 1 and 2 h of incubation, using a computer-
assisted sperm analyzer (CASA; Hamilton Thorne, Inc., Beverly,
MA, USA) with a 10 � objective at 37 �C and the SETUP specific for
buffalo bull semen according to Kumar et al. [20] (frame rate 60 Hz,
frames acquired 30, minimum contrast 35, minimum cell size 5
pixels, cell size 9 pixels, cell intensity 110 pixels, average path ve-
locity (VAP) 50 mm/s, straightness (STR) 70%, VAP cutoff 30 m/s and
straight linear velocity (VSL) cutoff 15 m/s). Ten microliters of
diluted semen specimen were placed in a prewarmed Makler
chamber and evaluated. Motility values, including total, progressive
and rapid motility, were recorded as percentages. The velocity
parameters, including VSL mm/s, VAP mm/s, curvilinear velocity mm/
s (VCL), beat cross frequency Hz (BCF), amplitude of lateral head
displacement, mm (ALH), linearity (LIN, [VSL/VCL] � 100) and STR
([VSL/VAP] � 100), were assessed. The sperm motilities were
calculated with speed standards set as fast >80 mm/s, medium
>60 mm/s, slow >20 mm/s and static. Eight microscopic fields were
analyzed for each evaluation.

2.2.2. Semen viability and morphology
Sperm viability and morphology were assessed microscopically

(200/400X Olympus DP12) using eosin-nigrosin staining according
to Beheshti et al. [21]. Briefly, a thin smear on a prewarmed slide
was prepared by mixing 10 mL frozenethawed semen with a 10 ml
drop of the supravital stain [1% (w/v) eosin B, 5% (w/v) nigrosin in
3% solution of trisodium citrate dehydrate]. Two hundred sper-
matozoa were counted and classified as live (unstained heads) or
dead (stained/partial stained heads) spermatozoa. In addition,
normal sperm morphology was assessed.

2.2.3. Sperm plasma membrane integrity
Plasma membrane integrity was evaluated using the hypo-

osmotic swelling test (HOS) according to Akhter et al. [22]. The
HOS solution was prepared from sodium citrate 0.735 g and fruc-
tose 1.351 g (Merck KGaA, Germany) in 100 ml distilled water, os-
motic pressure ~ 190 mOsm/kg. Fifty microliters of semen sample
were mixed with 500 ml of prewarmed HOS solution and incubated
at 37 �C for 60 min. After incubation, a drop of semen sample was
examined using a phase contrast microscope (400X). Two hundred
cells were counted per smear, and the percentage of HOS-positive
sperm (swollen and/or curled tails indicating an intact plasma
membrane) was calculated.

2.3. Extracellular enzymatic activity measurement

Frozen thawed semen samples were centrifuged at 3000 rpm
for 20 min. The supernatant fluid was collected and kept at �20 �C
until being assayed for aspartate aminotransferase (AST, AS 10 61,
Biodiagnostic, Egypt), alanine aminotransferase (ALT, AL 10 31,
Biodiagnostic, Egypt) and creatine kinase (CK, Cat No. #K777-100,
Biovision, USA) enzyme activity using colorimetric assays as
described previously [23,24].

2.4. Semen lipid peroxidation measurement

Glutathione peroxidase (GP 2524, Biodiagnostic, Egypt), nitric
oxide (NO 25 33, Biodiagnostic, Egypt) and total antioxidant ca-
pacity (TAC, TA 25 13, Biodiagnostic, Egypt) were determined
colorimetrically using commercial kits according to the methods
given in previous publications [20,25,26].

2.5. Comet assay (single-cell electrophoresis assay)

Spermatozoa DNA damage in triplicate samples per trial was
assessed using the comet assay as previously described [27]. A
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minimum of 100e200 sperm cell nuclei per sample were assessed
using the image analysis software Tn. TekCometScore™ freeware
(Ver. 1.5) for % of DNA in the head, % of DNA in the tail, tail length
and tail moment length. Head DNA (%) is the intensity of the head
compared with the intensity of the whole comet. Tail DNA (%) is the
intensity of the tail compared with the intensity of the whole
comet. Tail length is the distance of DNA migration from the center
of the edge of the head to the end of the tail. Tail moment length is
the distance from the center of the head to the center of the tail and
calculated as tail DNA % � length of tail.

2.6. In vitro embryo production

2.6.1. In vitro maturation (IVM) of bovine oocytes
According to Longobardi et al. [28], heterologous in vitro

fertilization (IVF) was used to assess the fertilizing capability of
buffalo sperm treated with 100 mM cysteamine. Bovine ovaries
were collected post slaughtering and transported in a thermos fil-
led with a warm saline solution (38 �C) to the laboratory. Ovaries
were individually rinsed with saline solution and dried with gauze.
Follicles 2 and 8 mm in diameter were aspirated using a 10 ml
syringe with an 18-gauge needle. Only cumulus oophorous cells
(COCs) with an intact compact cumulus were selected and trans-
ferred into a petri dish containing the washing medium (Sigma
Tissue culture Medium; TCM-199 HEPES supplemented with 10%
fetal calf serum). The COCs were washed 3 times with the washing
medium and 3 times with the in vitro maturation medium, as fol-
lows. According to the method of Elkhawagah et al. [29], oocytes
were matured in TCM-199 Earle's salt medium supplemented with
10% Sigma fetal calf serum (FCS), 5 mg/ml follicle-stimulating hor-
mone (FSH) (Folltropin, Bioniche Animal Health USA, Inc.), 5 mg/ml
luteinizing hormone (LH) (Lutropin, Bioniche Animal Health USA,
Inc.), 0.2 mM sodium pyruvate, 10 mg/ml gentamycin and 1 mg/ml
estradiol 17b. The oocytes were cultured in 70 ml droplets of IVM
medium (20 oocytes per droplet) covered by paraffin oil at 38.5 �C
in 5% CO2 for 24 h.

2.6.2. In vitro fertilization (IVF) of bovine oocytes
TALP Medium (Sigma) supplemented with 250 mM epineph-

rine, 1 mM hypotaurine, 20 mg/ml heparin, 0.2 mM pyruvate, 2 mM
penicillamine, 10 mg/ml gentamicin and 6 mg/ml BSA was used for
in vitro fertilization [30]. Frozen-thawed buffalo sperm were pre-
pared by centrifugation (30 min at 300 g) on a Percoll discontin-
uous gradient (45 and 90%). Semen (with or without 100 mM
cysteamine) was added at a final concentration of 1 � 106 sper-
matozoa/ml to the IVF droplets containing the oocytes. The IVF dish
was incubated for 18h, after which the cumulus cells were
completely removed and the zygotes were washed three times and
cultured for 6 days in synthetic oviductal fluid (SOF; [31]) at 38.5 �C
with 5% CO2 and 5% O2 for 7 days.

2.6.3. Embryo fixing and quality assessment after Hoechst staining
After 7 days of incubation, embryos were fixed with 2% para-

formaldehyde, mounted on a microscope slide, stained with
Hoechst 33258 and covered with a coverslip. Using a Nikon Eclipse
TE 2000-S fluorescence microscope equipped with a B2A (346 nm
excitation/460 nm emission) filter, embryos were evaluated for
cleavage, morula (contained more than 32 cells without an orga-
nized outer ring of cells) and blastocyst (contained more than
50 cells with an outer ring of cells around a blastocoel cavity) rates
[32].

3. Statistical analysis

The data were analyzed and presented as the mean ± SE with
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one-way analysis of variance (ANOVA) using SPSS (Ver. 25). Mul-
tiple comparisons of the means were performed using general
linear model (GLM) multivariate followed by Dunnett's post hoc
test. The chi-square test was used to compare the proportions of
matured oocytes, cleaved embryos, morulae and blastocysts. The P
value was set at P < 0.05 to define statistical significance.

4. Results

4.1. Effect of cysteamine on motility parameters

The effect of different concentrations of cysteamine on sperm
motility parameters is presented in Table 1. The total motility was
decreased with cysteamine treatment at concentrations
50e200 mM after thawing, 200 mM after 1 h and 50 and 200 mM
after 2 h of incubation (P < 0.01) compared to the control. The
progressive motility was improved directly after thawing in sam-
ples treated with 100 mM cysteamine (P < 0.01) compared with
controls.

4.2. Effect of cysteamine on velocity parameters

The effect of cysteamine treatment on different sperm velocity
parameters is shown in Table 2. Cysteamine incorporation in
extender medium before freezing had a variable effect on sperm
velocity parameters after thawing and incubation for up to 2 h at
37 �C. Cysteamine significantly (P < 0.01) improved the sperm VSL
value in samples treated with 100 mM and decreased the VCL value
in samples treated with 200 mM directly after thawing compared to
the control. The ALH values decreased significantly (P < 0.01) after
thawing in response to cysteamine treatment at concentrations of
100 and 200 mM and after 1 h at a concentration of 200 mM, while
they increased significantly (P < 0.01) after 2 h at concentrations of
100 and 200 mM compared to the control. The BCF values signifi-
cantly increased in samples treated with 50, 100 and 200 mM after
thawing (P < 0.01), 100 and 200 mM after 1 h (P < 0.01) and 50 mM
cysteamine after 2 h (P < 0.01) compared to the control. The STR
values increased significantly (P < 0.01) after thawing in all
cysteamine-treated samples and after 1 h in samples treated with
200 mM, while after 2 h, they decreased significantly (P < 0.01) with
cysteamine treatment at 100 mM compared to the control. The LIN
values increased significantly (P < 0.01) after thawing at all con-
centrations of cysteamine and after 1 h by 50 and 200 mM cyste-
amine addition. However, after 2 h, it decreased significantly
(P < 0.01) in samples treated with 100 mM cysteamine compared to
the control.

4.3. Effect of cysteamine on sperm viability, morphology and
membrane integrity

As shown in Table 3, sperm viability and normality were
improved by cysteamine 50 and 100 mM treatment compared to the
control (p < 0.05). The sperm plasmamembrane integrity improved
with all concentrations of cysteamine, and the highest effect was
recorded at 100 mM cysteamine.

4.4. Effect of cysteamine on extracellular enzymatic leakage and
oxidative stress biomarkers

The measurements of extracellular enzymatic activity in
extended semen revealed substantial differences after inclusion of
cysteamine in buffalo semen extender (Fig. 1). A noticeable
decrease in the extracellular leaked AST (P < 0.05), ALT (p < 0.005)
and CK (p < 0.01) was found in the cysteamine groups in compar-
ison to the control. Cysteamine supplementation, at all



Table 1
Effect of cysteamine on motility parameters of buffalo semen.

Parameter Group Post-thaw 1 h 2 h

Total motility (%) Control 87.78 ± 1.15a 76.00 ± 0.99a 60.96 ± 2.87a

Cysteamine 25 mM 81.83 ± 1.47 75.13 ± 1.32 52.83 ± 1.77
Cysteamine 50 mM 79.50 ± 1.58b 69.83 ± 0.58 43.92 ± 1.21b

Cysteamine 100 mM 79.21 ± 1.70b 75.67 ± 2.81 63.00 ± 4.27
Cysteamine 200 mM 73.04 ± 2.77b 60.67 ± 3.00b 49.83 ± 3.93b

Sig. 0.01 0.01 0.01
Progressive motility (%) Control 34.04 ± 0.42a 28.08 ± 1.01 19.58 ± 2.62

Cysteamine 25 mM 36.79 ± 0.52 29.79 ± 1.60 14.25 ± 1.48
Cysteamine 50 mM 36.00 ± 1.54 28.29 ± 0.72 13.46 ± 1.47
Cysteamine 100 mM 40.38 ± 0.92b 29.50 ± 1.57 17.83 ± 2.38
Cysteamine 200 mM 36.00 ± 1.99 25.04 ± 1.70 18.71 ± 2.52
Sig. 0.01 NS NS

Rapid motility Control 45.87 ± 0.81 35.46 ± 1.41 23.83 ± 3.04
Cysteamine 25 mM 46.88 ± 0.89 37.75 ± 2.15 17.21 ± 1.87
Cysteamine 50 mM 45.29 ± 1.95 35.29 ± 0.93 15.50 ± 1.70
Cysteamine 100 mM 48.50 ± 1.40 37.13 ± 2.27 23.79 ± 3.40
Cysteamine 200 mM 42.13 ± 02.72 29.29 ± 2.16 21.67 ± 2.97
Sig. NS NS NS

Values are presented as the mean ± SE.
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concentrations, reduced ALT leakage, while concentrations lower
than 200 mM decreased AST outflow. Cysteamine treatment at 100
and 200 mM reduced CK in the sperm-free extender.
Table 2
Effect of cysteamine on velocity parameters of buffalo semen.

Parameter Group Post-tha

VAP (mm/s) control 64.40 ±
Cysteamine 25 mM 64.49 ±
Cysteamine 50 mM 64.30 ±
Cysteamine 100 mM 65.14 ±
Cysteamine 200 mM 62.77 ±
Sig. NS

VSL (mm/s) control 54.13 ±
Cysteamine 25 mM 55.44 ±
Cysteamine 50 mM 55.31 ±
Cysteamine 100 mM 56.92 ±
Cysteamine 200 mM 55.45 ±
Sig. 0.01

VCL (mm/s) control 101.50
Cysteamine 25 mM 100.23
Cysteamine 50 mM 99.23 ±
Cysteamine 100 mM 99.45 ±
Cysteamine 200 mM 93.97 ±
Sig. 0.01

ALH (mm) control 4.60 ± 0
Cysteamine 25 mM 4.47 ± 0
Cysteamine 50 mM 4.41 ± 0
Cysteamine 100 mM 4.30 ± 0
Cysteamine 200 mM 3.99 ± 0
Sig. 0.01

BCF (Hz) control 29.26 ±
Cysteamine 25 mM 30.04 ±
Cysteamine 50 mM 30.49 ±
Cysteamine 100 mM 31.32 ±
Cysteamine 200 mM 32.81 ±
Sig. 0.01

STR (%) control 84.39 ±
Cysteamine 25 mM 86.17 ±
Cysteamine 50 mM 86.29 ±
Cysteamine 100 mM 87.08 ±
Cysteamine 200 mM 88.08 ±
Sig. 0.01

LIN (%) control 55.61 ±
Cysteamine 25 mM 57.29 ±
Cysteamine 50 mM 57.83 ±
Cysteamine 100 mM 58.83 ±
Cysteamine 200 mM 60.13 ±
Sig. 0.01

Values are presented as the mean ± SE. Sig: significance VAP: Average path velocity (
Amplitude of lateral head displacement (mm). BCF: Beat cross frequency (Hz). STR: straig
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Assessment of oxidative stress biomarkers demonstrated that
TAC levels showed a tendency (p ¼ 0.08) to differ after cysteamine
supplementation. This was accompanied by marked changes in
w 1 h 2 h

0.86 59.13 ± 0.31 52.48 ± 1.63
0.62 60.18 ± 0.70 50.10 ± 1.32
0.12 61.32 ± 0.49 50.72 ± 1.20
0.46 60.25 ± 1.01 53.93 ± 1.89
0.59 58.87 ± 1.40 54.18 ± 2.07

NS NS
0.61a 50.62 ± 0.13 45.58 ± 1.40
0.72 51.56 ± 0.47 43.34 ± 1.11
0.23 52.83 ± 0.40 44.37 ± 1.04
0.52b 51.58 ± 0.63 45.70 ± 1.46
0.42 51.90 ± 1.31 47.53 ± 1.79

NS NS
± 1.45a 96.08 ± 0.51 85.24 ± 2.27
± 1.31 95.77 ± 1.00 83.31 ± 1.78
0.50 97.96 ± 0.86 83.85 ± 1.34
1.03 96.92 ± 1.58 89.73 ± 2.54
0.86b 93.18 ± 1.76 90.33 ± 2.51

NS NS
.07a 4.54 ± 0.03a 4.26 ± 0.05a

.07 4.54 ± 0.06 4.50 ± 0.06

.05 4.45 ± 0.06 4.25 ± 0.05

.06b 4.56 ± 0.09 4.49 ± 0.07b

.06b 4.26 ± 0.05b 4.52 ± 0.03b

0.01 0.01
0.26a 28.35 ± 0.24a 29.27 ± 0.26a

0.23 28.90 ± 0.30 28.76 ± 0.17
0.30b 28.88 ± 0.27 30.30 ± 0.29b

0.23b 29.45 ± 0.19b 29.09 ± 0.17
0.26b 30.20 ± 0.19b 30.03 ± 0.36

0.01 0.05
0.39a 86.13 ± 0.26a 87.21 ± 0.25a

0.28b 86.08 ± 0.29 87.00 ± 0.18
0.27b 86.21 ± 0.13 87.46 ± 0.18
0.22b 85.54 ± 0.41 85.25 ± 0.44b

0.18b 88.04 ± 0.17b 87.83 ± 0.16
0.01 0.01

0.21a 54.42 ± 0.20a 54.63 ± 0.27a

0.09b 55.88 ± 0.38 53.75 ± 0.31
0.29b 55.54 ± 0.37b 53.96 ± 0.59
0.27b 54.38 ± 0.20 52.21 ± 0.39b

0.26b 56.38 ± 0.41b 53.29 ± 0.62
0.01 0.01

mm/s). VSL: Straight linear velocity (mm/s). VCL: Curvilinear velocity (mm/s). ALH:
htness ([VSL/VAP] � 100). LIN: Linearity ([VSL/VCL] � 100).



Table 3
Effect of cysteamine on cryopreserved buffalo semen viability, normality and plasma
membrane integrity.

Cysteamine (mm) Viability (%) Normality (%) Membrane integrity (%)

0 47.75 ± 0.63 43.33 ± 1.20 52.50 ± 2.10
25 mM 50.00 ± 2.71 48.27 ± 1.22 62.25 ± 1.11*
50 mM 62.67 ± 1.67* 57.27 ± 1.41* 65.67 ± 2.40**
100 mM 64.25 ± 1.32* 59.67 ± 3.18* 70.80 ± 1.65***
200 mM 44.00 ± 0.82 47.20 ± 2.13 60.40 ± 0.93*

Data are presented as the mean ± SE with *, ** and *** superscripts differing
significantly at p < 0.05, 0.01 and 0.001, respectively, compared with the control.
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glutathione peroxidase activity (p < 0.001) and NO production
(P < 0.01). Cysteamine treatment at 100 mM increased TAC
(p < 0.05) and glutathione peroxidase (p < 0.01) and decreased NO
production (p < 0.01). High concentrations of cysteamine (200 mM)
markedly (p < 0.01) increased NO levels.
4.5. Effect of cysteamine on DNA integrity of frozen-thawed buffalo
sperm

The data in Fig. 2 indicate the comet tail analysis of spermatozoa
Fig. 1. Influence of cysteamine supplementation on buffalo semen biochemical characterist
(CK), nitric oxide, glutathione peroxidase and total antioxidant capacity. Data are presented
0.001, respectively, compared with the control.
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DNA intactness. This assessment revealed that the DNA intensity
(%) in the comet head decreased at 25 mM (p < 0.01) but increased
at 100 mM (p < 0.001) and 200 mM (p < 0.05) cysteamine. On the
other hand, the DNA intensity in the comet tail (%) increased with
cysteamine 25 mM (p < 0.01) but decreased at 100 mM (p < 0.001)
and 200 mM (p < 0.05). The comet tail length and moment sub-
stantially (p < 0.001) decreased at 50e200 mM cysteamine.
4.6. Effect of cysteamine-treated semen on the developmental
potential of in vitro-produced embryos

Depending on semen quality assessment results, a cysteamine
concentration of 100 mM was selected to test the effect of
cysteamine-treated semen on the developmental potential of
in vitro-produced embryos. A total of 235 cumulus-oocyte com-
plexes (COCs) were selected for in vitro culture. Of these, 115 were
fertilized with cysteamine-treated semen, whereas 120 formed the
control group. As presented in Table 4, no difference was found
between the 2 experimental groups in the different parameters of
in vitro-produced embryos.
ics; aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase
as the mean ± SEM. *, ** and *** indicate significant differences at p < 0.05, 0.01 and



Fig. 2. Influence of cysteamine supplementation on DNA integrity of buffalo frozen-thawed spermatozoa examined with comet assays and evaluated using image analysis for % of
DNA in head, % of DNA in tail, tail length and tail moment length. Data are presented as the mean ± SE. *, ** and *** indicate significant differences at p < 0.05, 0.01 and 0.001,
respectively, compared with the control.
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5. Discussion

Semen cryopreservation procedures result in sperm damage,
which negatively affects sperm fertility and survival in the female
reproductive system [33]. Due to the generation of reactive species
(ROS) and lipid peroxidation during semen cryopreservation,
oxidative stress has been recognized as a major factor affecting
sperm quality [34]. Therefore, adding antioxidants to frozen sperm
before thawing can improve its quality to a certain extent [35].

In the present study, we used different concentrations of
cysteamine to verify its ameliorative effects against spermatozoa
damage during cryopreservation. The concentrations of cysteamine
used in the present study were lower than those used in any pre-
vious studies [17,36,37].

Sperm CASAmotility analysis is one of the most important tools
for assessing the fertilizing potential of spermatozoa [38]. A posi-
tive correlation has been recorded between the sperm motility and
kinetics analyzed by CASA and pregnancy rate in buffalo [39], as
well as non-return rate [40], pregnancy rate [41,42] and in vitro
fertilization rate in cattle [43,44]. In addition, sperm progressive
motility has been suggested to be used for fertility estimation of
frozen-thawed semen during low and peak breeding seasons in
swamp buffalo [45].

It has been stated that cryopreservation process deleteriously
affects the sperm motility and morphological and functional
integrity [16,46]. In the present study, cysteamine supplementa-
tion, especially at a concentration of 100 mM, improved the sperm
progressive motility directly after thawing, while in the meantime
decreased the total sperm motility compared to the control. It has
been stated that the sperm total motility includes both progressive
and non-progressive motility [47]. Our hypothesis is that, the
Table 4
Effect of cysteamine (100 mM)-treated semen before cryopreservation on the developme

Evaluated COCs Cle

Control 120 29
Cysteamine 100 mM 115 31

Chi square test: not significant COCs: Cumulus-oocyte complex.
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control group may contain high percentage of non-progressive
motile sperm compared to the different cysteamine groups. In
addition, we recorded an increase in the sperm kinetic values
including VSL, BCF, STR and LIN with all cysteamine groups and the
prominent increase was with cysteamine 100 mM. Our results are in
agreement with those recorded in goat by Bucak et al. [16], and bull
by Sarı€ozkan et al. [3] and Güng€or et al. [48], who verified a stim-
ulatory effect of cysteamine on frozen thawed sperm motility and
morphology. In contrast, a negative effect of cysteamine on cry-
opreserved sperm motility was noted at concentrations of 4 mM
[36] and 5 mM [49] in bulls and at 0.75, 1.25, 2.5 and 5 mM in
buffalo [17]. This negative effect might be attributed to the high
concentrations of cysteamine in the diluting media compared to
our concentrations. Cysteamine has been reported to have a cryo-
protective effect on the axosoma and mitochondrial integrity, by
increasing the glutathione synthesis resulting in improvement of
post-thawing sperm motility as well as morphological integrity
[16,50].

The post thawing sperm viability and normality percentage
decreased in all experimental groups compared to the fresh semen.
Cysteamine with the concentrations 50 and 100 mM improved the
sperm viability and normal morphology compared to the control.
Similar to our results, Bucak et al. [16], recorded an improving effect
on sperm morphology by cysteamine incorporation in goat semen
extender. However, Swami et al. [17] found a negative effect of
different concentrations of cysteamine in frozen thawed buffalo
sperm. Sperm cryoinjury occurs during cryopreservation due to the
changes in temperature and osmotic pressure, ice crystal damage
and oxidative damage from ROS production. The cryoinjury of
sperm leads to morphological changes and decreased viability and
motility [51]. The incorporation of cysteamine into semen
ntal potential of in vitro-produced embryos.

avage (%) Morula (%) Blastocyst (%)

(24.2) 24 (20) 13 (10.8)
(26.9) 23 (20) 11 (9.5)
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extenders increases the production of GSH, a crucial part of cellular
defenses against ROS (9), which successfully shields the semen
from ROS attack and improves sperm viability and normality.

In the present study, cysteamine with all concentrations
improved the sperm plasma membrane integrity, and its effect was
prominent with the concentration 100 mM. A similar positive effect
to cysteamine has been reported in cryopreserved bull [3] and
buffalo [17] semen. The oxidative stress defense mechanism is
generally poor in buffalo spermatozoa; therefore, lipid peroxidation
in the plasma membrane with subsequent membrane damage is
tremendously high [2]. Cysteamine enhances GSH which helps in
maintaining the sperm acrosomal integrity and plasmalemma
stability [51] by inhibiting the lipid peroxidation process [52].

The activity of transaminases (AST and ALT) and CK enzymes are
good indicators of semen quality and are concerned with energy
metabolism [53]. Transaminases play an important role in the
catabolism of glutamate by bovine spermatozoa [53], while the CK
shuttle is a source of extramitochondrial ATP and is responsible for
transferring energy from mitochondria to the cytosol [54]. In the
present study, the extracellular levels of AST, ALT, and CK were
shown to be lower in cysteamine-treated groups, particularly at
100 M. It has been stated that good quality semen is characterized
by lower seminal AST and ALT activities [55] which is consistent
with our results. Spermatozoa are characterized by plasma mem-
branes enriched with polyunsaturated fatty acids and cytoplasm
poor in scavenging enzymes [56]. Therefore, they are highly sus-
ceptible to oxidative stress, which induces damage to their mem-
branes, leading to extracellular escape of enzymes and other
molecules. The addition of cysteamine markedly decreased the
leakage of intracellular AST, ALT and CK enzymes; this is probably
due to the maintenance of sperm plasma membrane intactness in
response to cysteamine activity. The reduction in leakage of en-
zymes involved in energy metabolism might indicate an indirect
role of cysteamine in improving sperm activity and/or motility.

Cryopreservation has been found to cause a NO level upsurge
[57] and negatively impacts the viability and total motility of sperm
cells [58]. In the present work, cysteamine (at a concentration of
100 mM) helped to increase TAC, enhance GPX activity and lower
NO production. Meanwhile, high concentrations of cysteamine
(200 mM) lowered GPX and increased the produced NO levels. The
role of NO inmammalian sperm physiology seems paradoxical; low
NO levels are beneficial, while high NO levels appear detrimental
[59]. Elevated reactive oxygen species levels, including NO, in
semen are produced from morphologically abnormal spermatozoa
and seminal leukocytes [60]; therefore, they are negatively corre-
lated with semen quality [61]. Our data related to the effect of
cysteamine on GPX levels matches those reported in buffalo by
Sarı€ozkan et al. [3] and Büyükleblebici et al. [36], who noticed an
improvement in the level of GPX with the addition of cysteamine
during the cryopreservation of bull semen. Additionally, Swami
et al. [17] noted a decrease in TAC levels in the presence of cyste-
amine during cryopreservation of buffalo semen. These differences
might be due to the high concentrations used in the aforemen-
tioned studies compared with our doses.

Cryopreservation's negative influences on spermatozoa are
partially due to the induced oxidative stress. This attacks not only
the fluidity of the spermatozoa plasma membrane but also the
integrity of DNA in the sperm nucleus [62], leading to increased
cellular apoptosis. Mitochondrial dysfunction and DNA damage are
common consequences of oxidative stress [63]. In this study, the
rate of DNA damage was reduced with 50 and 100 mM cysteamine
but failed to diminish at levels below 25 mM. These results are in
agreement with Sarı€ozkan et al. [3] and Tuncer et al. [49], who
showed that cysteamine reduced the chromatin damage of sper-
matozoa compared with the control. On the other hand, our results
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are contrary to those shown in previous studies by Büyükleblebici
et al. [36], who reported that cysteamine did not decrease bull
semen chromatin damage during cryopreservation.

In the present study, cysteamine failed to improve the rate of
in vitro-produced embryos, which may be attributed to the heter-
ologous IVF technique used. Our results are in agreement with
those reported by Sarıozkan et al. [64], who found a nonsignificant
effect on the nonreturn rates of cattle inseminated by cysteine-
treated sperm. However, Iqbal et al. [37] reported a significant ef-
fect of cysteine-treated buffalo sperm on improving the pregnancy
rate of inseminated buffalo.

6. Conclusion

The addition of cysteamine (particularly at a concentration of
100 mM) to buffalo semen during dilution is beneficial in improving
the post thaw motility, antioxidant properties and DNA intactness.
These effects are primarily due to its enhancement of sperm vitality
and normality, maintenance of membrane integrity, and preven-
tion of the leakage of many important enzymes, such as AST, ALT
and CK, which are involved in the energy metabolism that in-
tensifies the spermatozoa resistance against the damaging effect of
cryopreservation. Cysteamine failed to improve the rate of in vitro-
produced embryos.
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