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ARTICLE INFO ABSTRACT

Recent trends in nanoparticles-based oral therapy have led to a proliferation of studies to enhance solubility,
permeability and chemical stability of many drugs. One of the significant current discussions is achieving high
bioavailability of drugs poorly absorbed with an impairing coincidence of oral degradation. Solid lipid nano-
particles (SLNs), absorbed and trafficked via transcellular and paracellular pathways, are one of the utmost
innovative promising nanocarriers to overwhelm drawbacks of the poorly absorbed drugs. The central topic of
this review is focusing on providing brief updates on SLNs for improving drug oral absorption with their evo-
lutions in curing numerous ailments. In order to create a new paradigm of therapeutic formulations, we also
highlight the transversal mechanisms of SLNs across the gastrointestinal hurdles and a series of novel researches
regarding in vitro protocols to uncover the investigations of the transmembrane absorption and transport kinetics
of SLNs. The current challenges and future perspectives of SLNs for oral drug delivery are refined and forecasted.
Several questions remain unanswered and it is recommended to pay a close attention to the most sophisticated in
vivo-like culture practices which open new avenues to thoroughly elucidate how SLNs interact with intestinal
mucosa at cellular and molecular levels. Additionally, further studies are needed to concentrate on the factors
influencing the absorption efficiency, proportion of SLNs in gastrointestinal tract as well as their correlation with
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their loaded drug bioavailability.

1. Introduction

Oral delivery is evidently proposed as being the most convenient
drug administration route, having several advantages over other de-
livery pathways, including lack of pain sensation, easily self-adminis-
tration, and excellent patient compliance. All over the world, the vast
varieties of marketed drugs are commonly administered via the oral
route. The efficacy of these drugs depends on the oral absorbability,
which, in sequence, mainly relies on drug properties and physiological
nature of the gut [1,2]. The adverse characteristics of some drugs, such
as poor hydrophobicity, low permeability, chemical instability, and
extreme first-pass metabolism, have a negative influence on the passage
of drugs through the gastro intestinal (GI) barriers [3]. The GI tract
presents physical, chemical, enzymatic and biological membrane bar-
riers for the transport and effectiveness of the poorly absorbed drugs
[4,5]. Thus, one of the most potential ways for enhancing the absorp-
tion of these drugs is to increase their solubility, stability and
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transmembrane transport by encapsulating the drug in and absorbing
on the surface of the nanocarrier systems [6,7]. These nanosystems
represent a smart vehicle for transport of hardly soluble and poorly
permeable molecules across the barriers [8]. They could modify the
transmembrane transport of the nanoparticle-loaded drugs and favor-
ably improve the diffusion of these drugs across the intestinal mucosal
hurdles [9]. The efficacy of the oral absorbability is not only de-
termined by the physicochemical characters of the drug, but also that
the nanocarrier delivery system could be implicated in this issue [10].
Solid lipid nanoparticles (SLNs), a novel nanosized drug delivery
system, have been gaining more attractive attention as an effective al-
ternative carrier to the traditional colloidal approaches, such as, lipo-
somes and polymeric particles since 1991 [11]. They can overcome
some of the major pitfalls of poor stability and low loading capacity that
commonly encountered with liposomes [12,13] and the possible bio-
toxicity and residual organic solvent associated with polymeric nano-
particles [14,15]. Regarding biocompatibility and non-toxicity, SLNs
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Fig. 1. Schematic representation of the pitfalls of oral drug delivery and SLNs as a promising nanocarrier in the effective delivery of poorly soluble drugs.

are recognized as safe, reliable nanocarrier [16].

SLNs are essentially made of a solid lipid core with a monolayer
surfactant shell. Bioactive molecules, especially lipophilic components,
can be incorporated into the solid lipid matrix [17] and released in a
controlled manner [18,19]. This process of drug entrapment in the core
matrix depends on several features, for example, the kinds of solid li-
pids, drug solubility in the selected lipids, manufacturing techniques,
and polymorphic criteria in the lipid matrix [20]. A variety of techni-
ques can be used for fabrication of SLNs. High-pressure homogenization
technique (HPH) is strongly chosen to be the convenient popular
method because it is easy, time saving and free of organic solvents in
the formulation process [20,21]. Recently, a large-scale production of
solid lipid-based suspension have been established by a hot melt
emulsion combing shear dispersion method, which will promote the
industrialization of lipid-based suspension. Lipid nanoparticles with a
solid matrix provide ubiquitous advantages such as high drug loading
capacity for both hydrophilic and lipophilic drugs [22]. This merit
could protect the chemically non stable drugs in external (during sto-
rage) and internal (in the gut) environments [22-24]. The lipids used
for preparing SLNs should be physiological biocompatible and biode-
gradable with low or no biotoxicity [25-27]. These lipids have the
capacity to promote oral absorption of the entrapped drugs through
selective lymphatic uptake [28]. Furthermore, nanoparticles (NPs)
formulated by these lipids, result in a higher drug solubility, strong
mucosal adhesion with prolonged GI tract residence time [29]. SLNs
have the potential to enhance drug oral absorption via promoting drug
permeation across the GI tract and improving the transcellular uptake
of drugs [30-32]. Altogether, lipid nanoparticles based on solid lipid

matrix offer a smart potential strategy as effective oral drug delivery.

The objective of this review is to introduce the superiorities and
pitfalls of oral drug delivery. Next, recent advances in SLNs for the oral
delivery of therapeutic drugs over the last ten years are recapitulated.
We provide a detailed overview on the GI uptake and transversal me-
chanisms of SLNs across the GI barriers via different research methods
(in-vitro, in-situ and in-vivo). Finally, the challenges and future per-
spectives for oral drug delivery by SLNs were also summarized and
predicted to explore and design a smart multifunctional nanocarrier.
This novel nanocarrier design should confer numerous features to en-
sure not only superior oral bioavailability by enhanced transcellular
absorption, but also ideal sustained release and higher therapeutic ef-
ficacy. This review will help the researcher to understand how to dis-
cover more efficient and promising SLNSs.

2. Superiorities and problems of drug oral administrations

Oral drug delivery system is an ideal and safe drug administration
route among other delivery pathways [33,34]. The oral formulations on
the market are easier to administer and achieve sufficient therapeutic
concentrations in vivo, which render the per oral (PO) delivery route the
ideal choice [35]. The oral delivery system has shown major advantages
over parenteral routes such as eliminating cannula-related infections
caused by potential iatrogenic spread of microorganisms through in-
serted cannula in the patient [36], no risk of thrombophlebitis [37,38]
and patient inconvenience is also decreased especially with dangerous
infections that could be treated at lower risk and often in a short- term
hospitalization or without hospital admission at all [39]. Furthermore,



Table 1
Enhanced absorption of various drugs by SLNs.
Application Active agent Limitation Formulation/ Lipid type Emulsifier Animal Model Progress achievedby SLNs Year Ref.
Modification
Cancer y- Tocotrienol Low Permeability SLNs Compritol bATO Lutrol Male SD rats Increased bioavailability by 3- 2012 [47]
fold
Cantharidin Poor solubility SLNs GMS" Poloxamer 188 Male SD rats Improved solubility and oral 2013 [69]
bioavailability
Doxorubicin Low permeability and instability ~PEG SA“-SLNs GMS Poloxamer 188 Male SD rats Enhanced bioavailability and 2013 [70]
prolonged circulation time
Tamoxifen Low Solubility SLNs GMS/Stearic acid Poloxamer 188/Tween 80 Female SD rats Improved oral bioavailability by 2014 [71]
1.6-fold
Docetaxel Poor solubility, P-gpd efflux and  Chitosan/ HACC*- GMS Tween 80 Male SD rats Increased AUC' and Cpa® by 2017 [72]
first pass effect SLNs 2.5-fold and 4.5-fold
Genistein Low solubility and SLNs GPS" Poloxamer 188 Male SD rats Enhanced dissolution rates, 2017 [73]
bioavailability absorption and bioavailability
Curcumin Limited solubility and stability NCC'-SLNs GMS Soya lecithin and Poloxamer Male SD rats Increased AUC and Cpax 2017 [67]
188
Cardio-vascular related Puerarin Poor solubility SLNs GMS Soya lecithin and Poloxamer SD rats Increased bioavailability more 2011 [98]
diseases 188 than 3-fold
Candesartan Poor solubility SLNs GMS Soybean lecithin and Tween 80 Male SD rats Improved oral Bioavailability 2012 [99]
cilexetil over 12-folds
Rosuvastatin Extensive first pass effect with SLNs Trilurin Egg lecithin and Poloxamer 188 Male Wister rats Improved oral bioavailability 2017 [74]
calcium bioavailability less than 20% 4.6- fold
Rosuvastatin PL and PL-PEG’ SLNs Compritol 888 Tween 80 Unisex Wistar rats Improved Cpay, AUC and 2017 [75]
calcium performance
Olmesartan Poor solubility and presystemic ~ SLNs GMS Soya phosphatidylcholine and ~ Male SD rats Promoted bioavailability by 2.3- 2017 [100]
Medoxomil metabolism Tween 80 fold
Olmesartan SLNs GMS Poloxamer 407 and Tween 80 Male Wistar rats Increased plasma exposure of 2018 [101]
Medoxomil the drug by 2.3- fold
Carvedilol Low solubility SLNs GPS Lauroyl macrogolglycerides Male NewZealand Prolonged MRT" to 23 h and 2018 [76]
white rabbits improved bioavailability by
more than 2- fold
Ezetimibe Rapid first-pass effect, P-gp SLNs Compritol 888 ATO  Tween 80 Male SD rats Enhanced oral bioavailability by 2019 [77]
efflux and low dissolution rate 16- fold
Central nervous system Apomorphine First pass effect and very low SLNs GMS PMS' Male Wistar albino  Improved bioavailability by 12 2011 [102]
related diseases bioavailability rats to 13- fold
Quetiapine fumarate First pass metabolism and poor =~ SLNs Dynasan 118 Egg lecithin and poloxamer 188 Male Wistar rats Enhanced bioavailability by 3.7 2013 [103]
bioavailability (9%) times
Resveratrol Variable oral bioavailability and SLNs Stearic acid Poloxamer 188 Male Wistar rats Increased oral bioavailability by 2014 [78]
quick metabolism 8-fold
Zaleplon Poor solubility and hepatic first- SLNs Compritol 888 ATO  Egg lecithin and Poloxamer 188 Male Wistar rats Long duration hypnotic effect 2017 [104]
pass metabolism and improved oral
bioavailability by 2.7-fold
Domperidone Poor solubility In alkaline media SLNs Dynasan 118 Tween 80 and sodium Wistar male rats. Enhanced bioavailability by 2.6- 2018 [79]
deoxycholate fold
Lurasidone Poor solubility and extensive SLNs GMS Poloxamer 188 and sodium Female SD rats Promoted bioavailability by 5.2- 2019 [80]
hydrochloride first-pass metabolism deoxycholate fold
Asenapine maleate  Extreme first pass metabolism SLNs GMS Poloxamer 188 and TPGs™ Female SD rats Improved bioavailability by 50- 2019 [81]
fold
Infections Viral Lopinavir Poor bioavailability SLNs Compritol 888 ATO  Pluronic F 127 Male Wistar rats Enhanced bioavailability 2011 [82]
Lopinavir PEG-SLNs Glyceryl behenate Poloxamer407 Albino Wister rats Increased bioavailability by 3.6- 2014 [83]
fold
Darunavir Low solubility, first pass SLNs Caster oil Sodium oleate Rats Increased Cpax by 2.7-fold 2018 [84]

metabolism, P-gp efflux and low
bioavailability (37 %)

(continued on next page)
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Table 1 (continued)

Application Active agent Limitation Formulation/ Lipid type Emulsifier Animal Model Progress achievedby SLNs Year Ref.
Modification
Bacterial Isoniazid Low permeability SLNs Compritol 888 ATO  Soy lecithin and Tween 80 Female Wistar rats  Improved bioavailability in 2013 [85]
plasma by 6 times and brain by 4
times
Enrofloxacin Variable oral bioavailability and Enteric coated-SLNs Octadecanoic acid PVA" Three-way hybrid Enhanced oral bioavailability by 2019 [86]
bitter taste pigs 2.6- fold
Enrofloxacin Docosanoic acid SLNs  Docosanoic PVA Pigs Improved oral bioavailability by 2019 [87]
2.4-fold
Fungal Miconazole Poor solubility SLNs Precirol ATO5 Cremophor RH40, lecithin and ~ Albino male rabbits Improved oral bioavailability by 2016 [88]
dicetylphosphate 2.5-fold.
Parasitic Arteether Poor solubility, low gastric SLNs GMS Soy lecithin and pulronic F68 Male SD rats Increased oral bioavailability by 2014 [89]
stability and extreme first pass 1.7- fold
metabolism
Lumefantrine Limited solubility and P-gp SLNs Stearic and caprylic ~ Poloxamer 188 and TPGs Male Swiss albino Enhanced bioavailability about =~ 2017 [30]
mediated efflux acid mice 220 %
Diabetes Insulin Gastric instability Chitosan- SLNs Witepsol 85E Tween 80 Male Wistar rats Enhanced oral bioavailability by 2011 [90]
17 % after chitosan coating
Insulin SLNs Dynasan 118 Soy lecithin and PVA Male Wistar rats Enhanced bioavailability of 2016 [91]
approximately 5 times,
compared with solution
Glibenclamide Poor solubility and variable oral Lecithin- SLNs GPS Tween 20 and sodium Male SD rats Greater hypoglycaemic effect 2016 [92]
bioavailability deoxycholate
Linagliptin Hepatic first pass effect and low Eudragit L100- SLNs  Stearic acid Pluronic F68 and PVA Albino Wistar rats.  Enhanced bioavailability by 2019 [105]
bioavailability (30 %) more than 1.9-fold
Osteoporosis Raloxifene Low solubility and first pass SLNs Compritol 888 ATO  Lecthin and Tween 80 Male SD rats Increased Cpa.x and AUC 2014 [93]
metabolism
Alendronate sodium Low bioavailability and side Enteric coated- SLNs ~ GMS Lutrol 68 Albino male rabbits Enhanced oral bioavailability by 2016 [94]
effects in esophagus and stomach with Eudragit S100 more than 7.4-fold
Multiple applications Cryptotan-shinone Poor solubility SLNs GMS/Compritol 888  Soy lecithin and Tween 80 Male SD rats Improved bioavailability 2010 [6]
ATO
Androgra-pholide Poor solubility And instability SLNs GMS and Compritol  Lecithin and Tween 80 Rats Promoted bioavailability about 2013 [95]
888 ATO 2.4-fold
Geniposide Low permeability SLNs GMS Poloxamer 188 SD rats Improved AUC by 50 times 2014 [32]
Magnesium Low liposolubility and PEG-SA-SLNs GMS PEG-SA Male SD rats Improved oral bioavailability by 2018 [96]

lithospermate B

permeability

7.5- fold

P-glycoprotein.

Sprague-Dawley rats.
Glycerol monostearate.
Polyethelene glycol-stearic acid.

¢ Hydroxypropyl trimethyl ammonium chloride chitosan.
f Area under plasma drug concentration-time curve.
& Maximum concentration of drug in tested area.

h

Glyceryl palmitostearate.

! N carboxymethyl chitosan.
J Phospholipon 90G, PEGlated phospholipid: ligands for specific targeting of low-density. lipoprotein receptors.

k Mean residence time.

! Polyethelene glycol monostearate.
™ D-a-tocopheryl polyethelene glycol 1000 succinate.

" Polyvinyl alcohol.
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the widely used oral drug formulations at the market are less expensive
than the parenteral medications. The latter usually needs sterile and
isotonic diluents, needles, syringes for administration and nursing time,
subsequently, it may cause a financial load for the patient [40,41]. The
oral route is the most preferable route for the long-term treatment of
chronic cardiovascular and cerebrovascular disorders due to superior
patient compliance including painfulness and cost-effectiveness [42].
Although the oral therapy has not been very frequently used in cancer
chemotherapy, new cytotoxic drugs of oral formulations undergoing
preclinical and clinical trials could be seen during the last decade [43].
However, there are influential hurdles confronting the delivery of drug
by oral route (Fig. 1). Oral delivery is significantly affected by the
physicochemical properties of the drugs. Some drugs or active in-
gredients show poor aqueous solubility, e.g. candesartan cilexetil [44],
genistein [45] and domperidone [46], and low-permeability, e.g. -
tocotrienol [47], isoniazid [48] and geniposide [32] that negatively
influence the GI absorption. Drugs are potentially degraded in the GI
tract due to the high acid content of the stomach, enzymes present in
the lumen of intestine, e.g. insulin [49], and arteether [50] or interacted
with endogenous components such as bile, which alter their absorption.
Extreme hepatic first-pass effect and rapid metabolism of drugs result in
poor absorption and low bioavailability, e.g. ezetimibe [51], lurasidone
hydrochloride [52] and asenapine maleate [53]. The absorption of
drugs can also be limited by efflux mechanisms. The drug transmem-
brane efflux proteins such as P-glycoprotein, enormously presented in
the epithelial cell membrane, are responsible for the low and variable
bioavailability of various agents, e.g. lumefantrine [54] and darunavir
[55]. Wholly, these bioactive ingredients are unable to attain satisfac-
tory therapeutic performance.

The major obstacle for the oral drug delivery is the fact that the drug
should successfully traverse several natural barriers in the GI tract be-
fore it can reach lamina propria [56]. The GI tract presents several
physical, chemical and enzymatic barriers that hinder drug oral ab-
sorption [57]. Poor GI permeability, due to the absorptive epithelial
cells, mucus secreting goblet cells and follicle-associated epithelium,
including M cells, is another main cause that remarkably affects the oral
uptake of many drugs [58]. The highly viscoelastic and adhesive mucus
make the oral administered drugs to be rapidly trapped and cleared
and, in turn limit their paracellular permeability across the epithelial
cell monolayer of the GI tract [59-61]. As well, intercellular tight
junctions (TJs) prevent most paracellular trafficking of drugs [62].
Once the drug transverses the layer of epithelial cells, before reaching
the blood stream, it encounters another difficulty involving the en-
dothelial cell layer of blood vessels [63]. So, it is fundamental to
emerge novel drug delivery systems to conquer these constrains.

3. Progress of SLNs in improving oral absorption of drugs

Parallel to the great development in nanomedicine, SLNs for active
ingredient delivery has also emerged rapidly due to their relatively
small size (50 —1000 nm) [11] and thus bypass the physiological bar-
riers more freely. It is noteworthy that the decrease in particle size lead
to a significant increase in the surface area of insoluble drug particles,
which subsequently results in enhanced absorption via monolayer cells
of the GI tract [64]. Moreover, the lipid degradation products of SLNs in
the intestinal fluid such as glycerides and fatty acids are capable to
enhance intestinal transport by production of mixed micelles and sub-
sequently enhance the uptake of drug into the enterocytes [65]. Besides
enhanced absorption by the cellular uptake, SLNs can improve the
lymphatic delivery through microfold cells (M cells). The improved
lymphatic transport decreases the first-pass metabolism, which, in turn,
improves drug bioavailability [66]. SLNs have shown a major pro-
mising potential to enhance GI absorption and bioavailability of various
drugs. These carriers are also valuable for controlled drug release. SLNs
are appreciated for a category of versatile drug delivery strategy that
have been applied for the treatment of several diseases affecting the
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heart, blood vessels, brain, central nervous system as well as cancer and
infectious diseases. It also recognized as being the most promising ap-
proach to the oral delivery of peptide-based drugs, so this important
carrier system is urgently needed for a protection against the proteo-
lytic milieu in the stomach. There is a large body of ongoing studies
discussing the oral drug absorption improvement by SLNs (Table 1).

3.1. Anticancer drugs

SLNs have been prepared in many studies to orally deliver active
agents with great anticancer effect. Baek et al. [67] reported that the
surface-modified curcumin-loaded SLNs with N-carboxymethyl chit-
osan improved the oral bioavailability by 9.5-fold via enhancing the
cellular uptake and lymphatic uptake (6.3 fold) pathways. In another
study, the prepared paclitaxel-loaded trimyristin SLNs with Egg r-a-
phosphatidylcholine (PC) and DSPE-methyl polyethylene glycol-2000
(mPEG2,000) as emulsifiers [68] showed enhanced intracellular uptake
of paclitaxel in MCF7/ADR by caveola-mediated endocytosis and MCF7
by clathrin-and caveola-independent mechanism. Several other drugs
such as y-tocotrinol [47], cantharidin [69], doxorubicin [70], tamox-
ifen [71], docetaxel [72], genistein [73] have been successfully shown
to have achieved enhanced bioavailability and site targeting, indicating
the superiority of SLNs for oral drug delivery.

3.2. Cardiovascular drugs

Many SLNs or modified SLNs payload cardiovascular drugs showed
an improved bioavailability, which can further validate their cardio-
protective efficacy. For instance, the optimized glyceryl trilaurate SLNs
displayed a 4.6-fold increase in oral bioavailability of rosuvastatin
calcium as compared with the suspension [74] and thus significantly
reduced the lipid profile for 36 h in hyperlipidemic rats. In accordance
with this study, a novel surface-engineered SLNs of rosuvastatin was
developed for enhancing oral bioavailability [75]. The superficial layer
of SLNs was decorated with Phospholipon 90 G (PL) and DSPE-mPEG-
2000 (PEGylated phospholipid as ligands for specific targeting to the
low-density lipoprotein receptors. The modified SLNs enhanced cellular
uptake and permeability across caco-2 cell. The area under plasma drug
concentration-time curves (AUC) for the plain SLNs, PL-SLNs and PE-
Gylated phospholipid -SLNs was 16.6, 21.2 and 25.1-fold improvement,
respectively, over pure drug suspension. The bioavailability of carve-
dilol was increased more than 2-folds after incorporation into SLNs.
Besides improved absorption, the half-life and the mean residence time
(MRT) of carvedilol were prolonged from 5.6 to 15.3 h and from 8.7 to
23.19 h by the SLNs [76]. The limited solubilization and bioavailability
of ezetimibe can be ameliorated by using SLNs. SLNs made up of
Compritol ATO and Tween 80 showed 3 and 16- fold increase in
bioavailability as compared to the marketed product and drug sus-
pension, respectively [77].

3.3. Central nervous system drugs

SLNs represent a promising nanocarrier to treat illnesses related to
the central nervous system. For instance, resveratrol-loaded stearic acid
SLNs stabilized with poloxamer 188 showed a significant 8-fold eleva-
tion in the oral bioavailability of resveratrol as compared to pure drug
[78]. After inclusion of domperidone into SLNs using Dynasan 118 as
the solid lipid and Tween 80 as stabilizers, the oral bioavailability was
enhanced more than 2.6-fold compared to domperidone tablet [79].
SLNs could enhance the bioavailability of lurasidone hydrochloride by
5-fold, compared with the suspension. Additionally, they enhanced
cellular uptake of lurasidone across the Caco-2 cell line by a clathrin/
caveolae mediated endocytosis mechanism [80]. It is more interesting
that asenapine-loaded SLNs showed a 50-fold improvement in oral
bioavailability compared with the dispersion [81].
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3.4. Antimicrobial agents

The SLNs as drug carriers have great potential to achieve the broad
intentions for transferring anti-infection agents to treat viral, bacterial,
fungal and parasitic infections.

3.4.1. Viral infection

Some studies have shown that the SLNs can enhance the oral ab-
sorption of some antiviral drugs and thus improve the therapy effects
against different viral infections. Lopinavir is a human im-
munodeficiency virus (HIV) protease inhibitor used in antiretroviral
therapy. SLNs enhanced the cumulative percentage dose of lopinavir
secreted into lymph by 4.5-fold higher than pure drug in methylcellu-
lose solution. Higher AUC was obtained for SLNs (2.13-fold) in com-
parison with lopinavir solution [82]. In another study, lopinavir loaded
SLNs showed 4.9 and 3.6-fold increase in C,x and bioavailability
compared to solution due to higher lymphatic uptake [83]. Darunavir, a
second-generation potent protease inhibitor, is used in the treatment of
HIV-1 infection. Lymphoid organs are the major reservoirs of HIV. The
use of SLNs can enhance the bioavailability of darunavir undergoing
hepatic metabolism as well as target the drug to the lymphoid tissues.
Darunavir incorporated SLNs showed a 5.7-fold increase in bioavail-
ability as compared to the suspension [84].

3.4.2. Bacterial infection

The enhanced oral absorption for antibacterial agents is widely
studied. Isoniazid is the most effective drug recommended by the World
Health Organization (WHO) for the management of all forms of tu-
berculosis. Isoniazid loaded SLNs were developed to achieve improved
bioavailability and prolonged circulation retention. Following oral ad-
ministration, a remarkable enhancement of bioavailability in rat plasma
(6 times) and the brain (4 times) was obtained by the SLNs compared to
the free drug [85]. Enrofloxacin, known as ethyl ciprofloxacin, is used
as a veterinary medicine for the treatment of bacterial infection, such as
Salmonellosis and S.aureus mastitis because of its strong antibacterial
activity and effective diffusion across cells. Our group explored SLNs
with enteric coating of polyacrylic resin to overcome the limited pa-
latability, variable bioavailability and light instability of enrofloxacin.
The bioavailability and MRT of enteric granules containing enro-
floxacin SLNs as the core was 2.6 and 2.7-folds greater than that of
soluble powder, respectively [86]. In our previous research, the for-
mulated enrofloxacin-loaded docosanoic acid SLNs provided 1.6 and
2.4-fold increase of the oral bioavailability in comparison with the
commercial injection and soluble powder, respectively [87].

3.4.3. Fungal infection

The treatment of fungal infections is very difficult and thus it is
necessary using SLNs to improve the treatment effects of antifungal
drugs. Miconazole is a broad-spectrum antimycotic drug with poor
aqueous solubility. Encapsulation of miconazole in SLNs exhibited
better Candida albicans killing in the diffusion disk test. The maximum
inhibition diameter of SLNs was 22 mm longer than that of the mar-
keted capsule (14 mm). Miconazole loaded SLNs was more effective in
the treatment of candidiasis with improved oral bioavailability by 2.5-
fold [88].

3.4.4. Parasitic infection

Many antiparasitic drugs, such as praziquantel, albendazole, and
fenbendazole, have very low oral bioavailability due to their low so-
lubility and first-pass effects. How to improve the oral absorption of
these antiparasitic drugs has always been a difficult scientific problem
for many pharmaceutical researchers to overcome. Arteether is an ar-
temisinin analog used for curing the multidrug-resistant malaria. It has
a therapeutic effect on falciparum malaria and cerebral malaria. SLNs
were used to address the low stability in the gastric fluid as well as the
short half-life of arteether. Arteether SLNs could improve oral
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bioavailability compared to arteether in ground nut oil by 1.7-fold [89].
Lumefantrine possesses antimalarial activity by inhibiting detoxifica-
tion of haem, this toxic haem and free radicals induce parasite death.
SLNs were used to alleviate the poor and variable oral bioavailability of
lumefantrine. The relative bioavailability of lumefantrine was 220 %
and the C,,, was increased to 2.7-fold following administration of SLNs
in mice [30].

3.5. Antidiabetic drug

SLNs were developed to protect insulin from the harsh GI environ-
ment [90,91]. Approximately 90 % of diabetic patients are suffering
from non-insulin-dependent type 2. Glibenclamide, a poorly water-so-
luble drug used in the treatment of type 2 diabetes. SLNs were prepared
with lecithin or PEG coating to increase glibenclamide stability in si-
mulative gastric solution. The oral administration of SLNs in diabetic
rats produced a rapid onset of glucose lowering and maintained the
reduction for 8 h [92].

3.6. Osteoporosis drugs

Oral raloxifene is approved for treatment of postmenopausal os-
teoporosis. Tran et al. [93] designed SLNs composed of Compritol 888
ATO as solid lipid for raloxifene delivery. The AUC and C,.x of SLNs
were increased by 2.7 and 3.1-fold compared to the free drug. The
enteric-coated SLNs for alendronate delivery were developed to con-
quer the challenge of crossing GI membrane. The oral bioavailability of
alendronate in rabbits was improved 7.4-fold by SLNs [94].

Further bioactive agents with multiple pharmacological activities
were predicated for oral absorption improvement by SLNs [95,96]. It is
noteworthy that SLNs and modified SLNs are promising colloidal for-
mulation for oral delivery of phytocompounds as curcumin, resveratrol
and ferulic acid. SLNs could improve the bioavailability of these
bioactive components about 5-10 times greater than that of their nat-
ural form. Moreover, surface modification of the SLNs with chitosan,
trimethyl chitosan and N -trimethyl chitosan provided a sustained re-
lease of their payload bioactive compounds, which lay a cornerstone for
fabrication of novel phytocompounds encapsulated into SLNs [97].

4. Absorption and transport mechanisms of SLNs across GI tract

Following oral administration, the NPs must go through the oral
cavity, the gastric fluid, intestinal content, and then gets contact to the
mucus layer coating the GI tract and lastly the epithelial cells villi. The
stomach is lined by a mucous membrane known as gastric mucosa that
contains glands which secrete gastric fluid. The gastric mucosa is al-
ways covered by a hydrogel layer of thick mucus, composed of large
glycoproteins, that is secreted by epithelial cells [106,107]. The con-
tinuous mucus secretion and its clearance rate can remove any foreign
material, limiting the residence time of orally delivered NPs. To address
this obstacle, mucus penetrating particles were developed to effectively
enhance the oral drug delivery by penetrating the rapidly cleared,
loosely adherent mucus film and be retained longer in the tightly ad-
herent layer [108]. PEGylation of NPs has been used as a strategy to
achieve such mucus-penetrating surface properties. In a prior study, the
SLN formulation with 10 % PEG (pSLN-10 %) provided the highest
levels of drug permeation across the cell layers of a coculture of Caco-2
and mucus-secreting HT29 cells. The oral dosing of pSLN-10 % to rats
displayed higher bioavailability 2 and 7.5- fold compared to SLN and
drug solution, respectively [70]. A variety of mucoadhesive drug de-
livery approaches have been engineered to maximize the association
between mucus and NPs, and thereby improving mucosal delivery of
therapeutics [109]. Chitosan-based or chitosan-coated NPs are con-
sidered the most common design of mucoadhesive systems [110,111].
Chitosan coating was found to increase intestinal absorption of SLNs
payload insulin [90] and curcumin [112]. Intestinal villus, the complex
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structure of the GI tract, is covered by different intestinal cells as ab-
sorptive enterocytes, mucus secreting goblet cells, and M cells. These
cells are linked together via TJs that massively increases the surface
area available for drug absorption [113]. The biological and peristaltic
nature of the GI tract together with its content can lead to low acces-
sibility and absorption of the drug active ingredients due to the che-
mical and enzymatic degradation, the clearance of the drug and the low
epithelium permeability [114,115]. SLNs play important roles in en-
hancing the oral absorption of water insoluble drugs by solubilization of
the digestion products (micelles, mixed micelles, vesicles and free fatty
acids) in the lumen of the gut [116]. The NPs and degradation products
are taken up by passive diffusion, facilitated diffusion and active
transport across the enterocyte membrane. In order to reach blood
circulation, the absorption of SLNs can be initiated through different
routes such as paracellular, transcellular and lymphatic transports.

4.1. Paracellular uptake

The paracellular gap constitutes not more than 1% of the intestinal
mucosal surface. The smaller hydrophilic and charged particles may
cross the epithelial cell layer through the paracellular route. Particles
could pass through the TJs in the paracellular pathway. The space and
environment between cells regulate the drug translocation across the
intercellular route [117,118]. In most approaches of nanocarrier, the
paracellular transport may be toxic when inevitably other constituents
of the feces are diffusing via the opened TJs and also simply not feasible
for some drug translocation due to size restrictions and lack of sensi-
tivity of transport molecules once opened up [119]. The TJs block the
most paracellular transport of drug molecules larger than 1 nm [120]
and weighing more than 200 Da. However, hydrophilic drug molecules
weighing less than 200 Da can freely move to pass through this route
[121].

The TJs comprises of three distinctive parts: tight junctions or zo-
nula occludens, zonula adherens and macula adherens. The division of
TJs is known to have a pivotal role in the nonspecific translocation of
NPs that do not have receptors or mediators on the epithelial cell sur-
faces. The paracellular transport of NPs can occur through the closing
and opening of TJs between epithelial cells. The negatively charged
proteins of TJs are amino acids with ionizable side chains which may
alter the paracellular translocation of drug molecules due to charge-
charge interactions. Nonetheless, this transversal route can be improved
by applying permeation enhancers such as calcium chelators, poly-
acrylic acids and polymers. The latter has been found to be able to
reversibly open TJs via induction of a cascade of reactions and inter-
actions between the negatively charged cell membrane and the positive
charges on the polymers, which ultimately result in TJs disassembly
and in turn improve the particle transport between adjacent cells. From
another point of research, calcium chelators based nanocarriers could
reversibly disrupt the TJs through activation of protein kinase C, which
subsequently increased the paracellular permeation through the in-
testinal epithelial cells [122-124]. Also, chitosan could increase the
paracellular permeation via reversible distribution of TJs. This virtue
has been emphasized in the Caco-2 cell monolayers model, in which,
transepithelial electrical resistance (TEER) diminution and actin fila-
ments redistribution were observed [125]. However, this paracellular
permeability enhancing mechanism is likely to be safe since it does not
result in increased absorption of the common lipopolysaccharide en-
dotoxin found within the GI tract. This indicates that TJs disruption is
not accompanied with increased permeability to endotoxins [126].

4.2. Transcellular uptake

In the GI tract, particles can be absorbed through different sites and
mechanisms according to their actual size. For example, active mole-
cules with a diameter of 1 um could be absorbed via intestinal phago-
cytosis, whereas smaller particles (< 10 pym) may be absorbed through
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the Peyer’s patches associated M cells. NPs (< 200 nm) can be trans-
ported by endocytosis process through intestinal enterocytes [127].
Intestinal epithelial cells can uptake NPs via various facilitated trans-
cellular mechanisms. Transcellular uptake of NPs is mainly initiated by
energy-dependent specific endocytic mechanisms [128] or by non-
specific processes, which rely on particle diameter, surface charge and
mucobioadhesive properties [129]. Transcellular uptake process en-
countered a major epithelial barrier to transport NPs from the intestinal
lumen to systemic circulation [130]. The transcellular transport is an
active energy dependent mechanism that occurs via specific receptors
and carriers [131].

Generally, the transcellular transport of NPs is operated by one of
these active endocytic processes: phagocytosis (zipper and trigger like
mechanism) and pinocytosis including (macropinocytosis, clathrin-
mediated and claveolin mediated endocytosis as well as clathrin non
-mediated and claveolin non-mediated endocytosis (e.g., Arf6, flotillin,
Cdc42 and RhoA-dependent endocytosis). Through these mechanisms,
NPs are engulfed at the apical membrane, and then released into the
basolateral compartment of enterocytes. The process is started by
pinching of vesicles from the membrane followed by internalization of
the extracellular contents and transferring to subcellular compartments
[132] (Fig. 2).

The transcellular transport of SLNs across intestinal epithelial bar-
riers could be characterized via several techniques, including flow cy-
tometry (FM), transmission electron microscopy (TEM), confocal laser
scanning microscopy (CLSM), total internal reflection fluorescence
microscopy (TIRFM) [133] and addition of endocytic inhibitors and
transcellular tracers [134]. The CLSM can efficiently evaluate the co-
localization of nano delivery systems with specific endocytosis markers.
For example, cholera toxin is used as a marker of caveolae raft-medi-
ated endocytosis and transferrin is a marker of clathrin-mediated en-
docytosis [135]. As well, the localization of NPs within the cell orga-
nelles could be identified through the probe labelling. LysoTracker,
ERTracker or MitoTracker probes can be used to image the lysosomes,
endoplasmic reticulum (ER) and mitochondria, respectively [136].
However, in vitro cell monolayers grown on inserts using specific che-
mical inhibitors are common to investigate cellular mechanistic studies.
The transport mechanism across the Caco-2 cell monolayer was as-
sessed in the presence of different inhibitors, such as sodium azide, that
has been reported to inhibit endocytosis [137]. Other uptake inhibitors,
including chlorpromazine (clathrin inhibitor), MBCD, filipin (claveole
inhibitor), cytochalasin D, EIPA (macropinocytosis inhibitor) were used
to deeply identify the process of endocytosis. Endocellular transport
between organelles was evaluated by addition of different inhibitors,
such as brefeldin A inhibits transfer between ER and Golgi apparatus,
monensin inhibits conveyance between the Golgi apparatus and cell
membranes, nocodazole inhibits of microtubule, bafilomycin Al in-
hibits the maturation process of lysosomes [133]. In addition, propra-
nolol was used as a tracer for transcellular pathways [138].

Clathrin-mediated endocytosis and caveolin-mediated endocytosis
appear to be key mechanisms in most of the examined nanomaterial in
different cell lines [8,80,81,139]. It is validated that more than one
pathway has been utilized by various NPs for the endocytic uptake.
Desai and Thakkar demonstrated that the Caco-2 uptake of SLNs was
mediated via clathrin- and caveole-mediated pathways and not via
macropinocytosis and SLNs preferably used caveole dependent en-
docytic pathways [84]. Transport of NPs via the transcellular pathways
depends on the physicochemical properties of NPs, for instance, the
more NPs diameter decreases, the more NPs transcytosis increases
[140,141]. After the occurrence of NPs cellular uptake via one of the
endocytic mechanisms, further trafficking lines are then determined;
the particle may be degraded in lysosomes or passed to a specific cel-
lular organelle or released its content inside the cytosol, the cell might
also withdraw it out to the extracellular space [142]. The available data
in vitro demonstrated that SLNs were destined in the lysosomes and
endoplasmic reticulum after uptake [99]. Nonspecific passive diffusion
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Fig. 2. Schematic of different mechanisms of NPs intracellular pathway. There are multiple routes for the cellular entry of drug nanoparticle. This entry is initiated by
receptor and non-receptor mediated endocytosis as clathrin, claveolin, flotillin and endophilin mediated uptake, in addition micropinocytosis and adsorptive
mediated transport. After the nanoparticle entry, complex intracellular trafficking is induced to release the nanoparticle outside the cell through the exocytosis

mechanism or degrade it within the cell through the endolysosomal trafficking.

mechanism usually transports hydrophobic NPs through the apical cell
membrane. However, the majority of hydrophilic particles cannot be
absorbed via this inactive permeability route [143]. Once NPs reach the
apical side of the cells, another possibility of drug uptake is performed
through the active transcytosis process, the process starts with en-
docytic uptake, then intracellular vesicle transport within the cell, fi-
nally a vesicle withdrawal from the interior of the cell by exocytosis
[144]. After the cellular uptake of nanocarrier, the vast majority gets
passed along the endolysosomal trafficking pathway involving a
transport from early to late endosomes and their fusion with lysosomes
[145-147]. Within the lysosomal stage, NPs either get degraded via
enzymes or is markedly accumulated depending on the nanoin-
gredients. So, the potential challenges of drug transcellular trafficking
are to mitigate or completely avoid endolysosomal pathway or to elicit
endosomes or lysosomes to fuse with the cell membrane releasing na-
noparticle or nanocarrier get away from the endolysosomal system to
exit from the cell [148]. The process, called cellular exocytosis, is
proposed to be a vital process with high interest in the most nanocarrier
application systems due to the fact that NPs need to be successfully
released from the cell [149]. Efficiency of transcytosis of NPs is pro-
portionally related to their cellular exocytosis events. Several exocytosis
pathways can be initiated depending on endocytosis mechanism. For
instance, lysosomal escape subsequent exocytosis or lysosomal fusion
with the plasma membrane and, multivesicular body (MVB) or late
endosome fusion with the plasma membrane and fusion of caveolae
with the plasma membrane [150,151]. Up to now, the exact mechan-
isms of transcellular translocations of NPs are still not totally under-
stood. The proceeds of transcellular transport especially endolysosomal
trafficking, mark a key challenge, are not sufficient to appreciate the
potential application of a majority of nanocarriers [152,153]. It is
evident that the transcytosis efficiency differs according to the charge of

NPs. The positively charged NPs are able to evade the lysosomes,
whereas the negatively charged NPs concentrate inside lysosomes
[154].

Most of SLNs transport studies have been presented in terms of
permeability and not in terms of transport mechanisms. However, some
mechanistic studies of SLNs transport across Caco-2 cell monolayers
have been developed. One important example, the endocytosis and
transcytosis of the SLNs were mediated by micropinocytosis, clathrin-
and caveolae pathways. SLNs were distributed in the transferrin related
endosomes, lysosomes and endoplasmic reticulum after internalization.
The endoplasmic reticulum, Golgi apparatus, and microtubules were
determined to be the main organelles for transport of the SLNs to both
the basolateral and apical membrane sides and discharging the SLNs
out of the cells. The transport of intact SLNs to the basolateral mem-
brane side were demonstrated. These results indicated that the SLNs
can protect the loaded drugs from degradation in the GI tract and en-
hance the permeability of drugs crossing the intestinal epithelial cell
monolayers [133]. Similarly, the uptake of SLNs occurs largely through
a clathrin-mediated endocytosis mechanism. Caveolae-mediated en-
docytosis also displays a prominent role in the uptake of SLNs. Re-
garding the transcytosis pathway, SLNs were able to traverse the in-
testinal barrier by a preferential transcellular route [8].

4.3. Lymphatic uptake

The lymphatic system holds a basic role in absorption of triglycer-
ides, long-chain fatty acids, lipid soluble vitamins, and xenobiotics
[155]. Drug delivery via the lymphatic system provides major benefits,
involving circumventing hepatic first-pass metabolism and targeting
active drugs to infection that circulate through this system. For NPs
cellular uptake, lymphatic capillaries of the lymphoid follicle-
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Fig. 3. Schematic of various mechanisms of transporting SLNS through the lymphatic system. The lymphatic transport of SLNS includes M cells of Peyer’s patches,

transcellular and paracellular pathways.

associated epithelium are significantly more permeable than the ad-
jacent blood capillaries. Various mechanisms of transporting the drug
through the lymphatic areas after the oral administration were re-
ported. These encompass M cells of Peyer’s patches, transcellular me-
chanism and paracellular mechanisms. The transcellular pathway is the
most fundamental mechanism (summarized in Fig. 3) for the uptake of
lipid-based nanocarriers [156]. M cells, located in Peyer’s patches in the
small intestine, are considered a promising target for the intestinal
transcytosis of nanodrugs [157]. M cells embody a potential entry
portal for oral drug delivery due to their high transcytotic efficiency
[158,159] and low intracellular lysosomal activity [160]. M cells ex-
hibit both specific and nonspecific receptor-mediated mechanisms for
NPs uptake, such as actin-dependent endocytosis [161]. The adminis-
tration of a drug with a long side lipid based nanocarriers, provokes
chylomicron formation by enterocytes, which further solubilizes the
lipophilic drug into the nonpolar core and thus persuades the uptake of
aquaphobic drugs into the intestinal lymphatics [162]. Lymphatic up-
take is influenced by the hydrophobicity of NPs, lipid nature, and chain
length [163]. The oral route exposes drugs to presystemic hepatic
metabolism, which can reduce drug absorption. In order to circumvent
this problem, lipid based nanocarriers absorbed via the intestinal lym-
phatic system are basically protected from the hepatic first pass effect.
So, the transport via the lymphatic system can significantly enhance the
oral bioavailability of drugs that extensively metabolized by the liver
[164]. Several studies related to the lymphatic uptake of SLNs after oral
administration have been carried out [161,162,165]. For example, an
attempt to enhance the oral bioavailability and target intestinal lym-
phatic transport of nimodipine was performed by using SLNs [166].

After a single oral dosing of optimized nimodipine-SLNs with a mean
diameter of 116 nm at 8 mg/kg in rats, the bioavailability of nimodi-
pine increased 2-fold compared with the drug alone. Interestingly, the
lymphatic uptake of N-carboxymethyl chitosan-SLNs incorporating
curcumin were found to be 6.3-fold more than that of drug solution
[67]. In another study, the in vivo lymphatic transport of hydroxysafflor
yellow A (HSYA)-loaded SLNs was determined in animal pretreated by
cycloheximide to block the secretion of chylomicrons from the en-
terocyte afore oral administration. Cycloheximide pretreatment mark-
edly lowered the oral absorption of HSYA delivered by SLNs, which
indicated that the oral absorption of HSYA-SLNs largely depended on
lymphatic transport in intestine [167].

5. Method developments for oral absorption and transport of SLNs

Some transport studies based on various models (in vitro, in situ and
in vivo) have been extensively used to understand the absorption me-
chanisms of SLNs across the GI tract. The intestinal epithelium is made
up of a cell monolayer, which is mainly composed of enterocytes in-
terspersed with mucus-secreting goblet cells and specialized epithelial
M cells. Subsequently, a variety of in vitro cell models have been de-
veloped and further investigations are typically conducted using var-
ious cell lines mimicking the in vivo intestinal barriers to assess the
cellular uptake mechanisms of SLNs.



Table 2
Cellular uptake and transport mechanisms of SLNs across the Caco-2 cell monolayer models.
Formulation Active ingredient Lipid type Surfactant Study method Transport mechanism /outcomes Year Ref.
Chitosan- coated SLNs Insulin Witepsol 85E Tween 80 - Permeability studies -Enhanced absorption and permeability 2011 [90]
SLNs Risperidone Compritol 888 ATO Tyloxapol -Transport studies -Enhanced transport 2012 [178]
SLNs Candesartan cilexetil GMS* Tween 80 -Cellular uptake studies byendocytosis -Clathrin and caveolae mediated endocytosis 2012 [99]
inhibitor
Stearic acid-octaarginine modified Insulin Stearic acid Poloxamer 188 -Transport experiments -Increased the internalization of insulin 18.4 2012 [175]
SLNs times.
Chitosan -coated SLNs Iron Stearic acid PVA® - Absorption studies -Improved iron absorption 2013 [173]
SLNs Androgra-pholide GMS and Compritol 888 Tween 80 -Transport studies in presence of P-gp -The cellular transport associated with active 2013 [95]
ATO substrates carrier P-gp
SLNs Carvedilol Compritol 888 ATO Poloxamer 188 Cellular uptake-investigation -Prolonged drug release 2014 [174]
SLNs B-carotene Sodium caseinate/ Whey Sodium caseinate/ Whey -Cellular uptake studies -Enhanced transport 2014 [179]
protein isolate (1% fat) protein isolate
SLNs Zanamivir GMS PVA/Poloxamer 188 -Transport studies -The uptake ability of zanamivir loaded SLNs 2015 [177]
significantly decreased.
ODA-FITC"-Labeled SLNs Au Nanoparticle GMS Poloxamer 188 -Transport studies via endocytosis and -Clathrin and caveolae mediated endocytosis 2016 [133]
endocellular inhibitor -Micropinocytosis
-Vital organelles in transport include, lysosome,
ER‘ and Golgi apparatus
Phospholipon 90 G And DSPE-mPEG- Rosuvastatin calcium  Compritol 888 Tween 80 -Endocytotic uptake study in presence of -Enhanced cellular uptake 2017 [75]
2000°-SLNs filippin and Sucrose
HA2' peptide-SLNs Insulin Tripalmitin and stearic acid  Pluronic F68 2018 [176]
-Permeability studies -Clathrin-mediated transport.
-Cellular uptake study by flow cytometry, -Improved permeability from 1.5- to 2.4-fold
endocytic inhibitor and Eliza method
-Intracellular endolysosomal study -Clathrin-mediated endocytosis
-The transepithelial transport study -Lower colocalization of insulin noticed with
late endosomes and lysosomes
SLNs Lurasidone GMS Poloxamer 188 -Uptake study using confocal microscopy and -Both clathrin and lipid raft/caveolae mediated 2019 [80]
hydrochloride endocytosis inhibitor endocytosis
-Permeability study -Improved permeability and transport efficiency
across the intestinal barrier
SLNs Asenapine maleate GMS Poloxamer 188 -Cellular uptake study by confocal -Increased permeation by 7.6 times via both 2019 [81]

microscopy, flow cytometry and endocytosis
inhibitor

clathrin and claveolae mediated endocytosis

2 Glycerol monostearate.
Polyvinyl alcohol.

Endoplasmic reticulum.
¢ PEGylated phospholipid.

Octadecylamine fluorescein isothiocyanate.

f Hemagglutinin-2 peptide endosomal escape agent.
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5.1. In vitro cell culture models

Ref.
[90]
[70]
[183]
[184]
[182]

5.1.1. Caco-2 cell type

As an alternative to the animal models, Caco-2 cell type is the most
extensively used as a model of intestinal cell barrier. In culture, Caco-2
cells, a human epithelial colorectal adenocarcinoma, differentiate
spontaneously into a polarized epithelial cell monolayer which has
remarkable morphological and biological similarity to that of intestinal
epithelium. When they reach a confluent monolayer on cell culture
filter, Caco-2 cells well express TJs between adjacent cells, microvillar
transporter and efflux proteins [168]. As well, a considerable amount of
P-glycoprotein is established, which frequently proposed as an addi-
tional factor affecting drug absorption and pharmacokinetics [169].
This makes these cells a powerful excellent tool to predict and under-
stand underlying carrier mediated mechanisms of uptake of NPs, ther-
apeutically relevant proteins, peptides and chemical compounds across
human intestinal tissue [170-172].

Caco-2 cell monolayer was selected as a model for absorption and
transport studies of drug loaded SLNs [99,173,174]. Table 2 sum-
marizes in vitro cellular uptake and internalization studies of various
active ingredients loaded SLNs using the Caco-2 cell as type model.
Absorption improvement of insulin by SLNs and chitosan-coated SLNs
were identified through the Caco-2 cell monolayer [90]. In another
study, the SLNs consist of the stearic acid octaarginine increased the
Caco-2 cell’s internalization of insulin by up to 18.4 times compared to
the insulin solution [175]. In a novel study, SLNs with an endosomal
escape agent efficiently facilitated the escape of the loaded insulin from
the acidic endosomes [176]. The iron absorption of Caco-2 from chit-
osan coated SLNs was greatly higher than ferrous sulphate and un-
modified SLNs [173]. The asenapine -SLNs permeation increased 7.6
times across Caco2 compared to the asenapine dispersion at 4 h [81]. In
contrast to the above positive results, SLNs prepared from glyceryl
monosterate significantly decreased the potential transport of zana-
mivir across the Caco-2 cell monolayers at 4 h [177]. Consequently, the
more tests and errors lead to faster advances. The actual absorption
mechanism of developed SLNs is needed to be tried using different in
vitro permeability paradigm, which can express the in vivo intestinal
mucus conditions.

Even though the Caco-2 cell monolayer model is commonly used
and generally accepted as standard for assessment of intestinal trans-
port, this model reveals certain limitations such as lack of mucus that is
the main characteristic for the intestinal mucosa. So, a co-culture
model, involving human HT29-MTX (goblet-like cells) with Caco-2 cell
type has been developed [180] to mimic the mucus barrier covering the
intestinal cells. The co-culture model provides a transport environment
that is similar to that of the human intestinal epithelium [181]. Con-
sistently, available data demonstrated that SLNs were absorbed in
greater extend when HT29 cells were present, emphasizing the role of
mucus in the retention of NPs on the intestinal epithelium (summarized
in Table 3). For instance, a Caco-2/HT29 co-culture monolayer model
was used for understanding the potential role of chitosan on the in-
testinal absorption of insulin [90]. Compared with the Caco-2 mono-
layer, chitosan-coated SLNs containing insulin presented greater
transport either paracellularly or transcellularly across the co-culture
monolayer model. So, chitosan coated SLNs appear to stabilize and
protect entrapped insulin from degradation in the GI tract that, in se-
quence, increase the concentration of NPs at the site of absorption and
enhance its permeation. In another study, cationic SLNs loaded with
insulin for oral delivery were prepared with average size lower than
300 nm and a zeta potential higher than 33 mV. The cationic SLNs
remarkably increased the transport of the encapsulated insulin through
the Caco-2/HT29 co-culture monolayer cells from 1.16 to 2.89 % after 4
h [182]. Importantly, polyethylene glycol (PEG) was conjugated onto
monostearin to fabricate SLNs with superior mucoadhesive property.
The PEGylated SLN exhibited higher permeability of doxorubicin
through in vitro mucus secreting cells by 5-fold than unmodified SLNs

Year
2011
2013
2013
2014
2016

-Improved permeability of modified SLN by 5- fold, while just 3.9-fold by SLN.

-Simple diffusion transport and enhanced delivery

-Enhanced uptake by modified SLNs
-Active transport via both clathrin- and caveolae-dependent endocytosis

-Increased paracellular permeability and mucoadhesion
-Improved passage and transport of cationic-SLNs

-Increased permeability than Caco-2 cell monolayer

Transport Mechanisms

Permeability studies
Permeability study
Transport studies
Transport study

Study method
Uptake study

CSK* or IRQ" peptide ligand

Modified surface
Chitosan
PEG-stearic acid
PEG*

Soy lecithin and Poloxamer 407

Poloxamer

1
Lecithin and Poloxamer 124

Emulsifier
Tween 80
Poloxamer 188

Witepsol 85E
Monostearin
Tripalmitin

Stearic acid
GPS¢

Trimyristin

Lipid type
@ CSKSSDYQC peptide ligand with affinity to goblet cells.

> JRQRRRR a cell-penetrating peptide.

Active ingredient

Doxorubicin

Curcumin

Salmon calcitonin

¢ Glyceryl palmitostearate.
4 polyethylene glycol.

Insulin
Insulin

The cellular uptake and transport mechanisms studies of SLNs using Caco-2/HT29 coculture cell monolayers.

Table 3
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[70]. It was proved that SLNs possess potential to deliver curcumin in a
coculture cells. The transport pathway of the solid particles was simple
diffusion, with permeability rates of about 3 x 107° cm s [183].

Co-culture of Caco-2 cells with human Raji B lymphocytes has been
developed to provoke M cell like phenotype in the Caco-2 cells that
mimic the human follicle associated epithelium (FAE) [185,186]. Since
the cellular transcytotic capacity is induced by the transformation to
the FAE-like phenotype. So, the co-cultures have frequently been used
to study transcellular transport of several bioactive molecules and NPs
[187]. Remarkably, the caveolin protein expression is increased in the
M-cell like cells [188]. Recently, a potential intestinal in vitro triple
culture model, including enterocytes, mucus secreting HT29-MTX cells
and M cells was established [189]. This strategy can offer a further
verification to design more efficient orally administered NPs able to
overcome transport cellular barriers. However, there is a paucity of
studies to date have used triple culture models to evaluate the ab-
sorption and transport kinetics of SLNs. Consequently, supplementary
researches will need to be performed by an evolutionary procedure to
confirm their applicability to the field of nanotechnology.

5.1.2. MDCK cell line

Scientists also investigated the use of Madin-Darby canine kidney
(MDCK) as a useful tool to assess the membrane permeation char-
acteristics of early drug ingredient discovery. Under standard culture
conditions, MDCK cells express intercellular TJs and form polarized
monolayer cells. The main virtue over Caco-2 cells is the shorter culture
time till reach confluence. Subsequently, labor and cell contamination
are reduced [190,191]. Nevertheless, the canine (non-human) and renal
(non-intestinal) origins of the MDCK cells are considered as drawbacks
and should also be thought out before using the MDCK cell model as a
main screening strategy for drug absorption. Few studies have been
reported on the transport mechanism of SLNs in MDCK epithelial cells
(summarized in Table 4).

5.1.3. In vitro everted gut sac technique

The everted gut sac model is a convenient and easily handled in vitro
method to examine the intestinal absorption of drugs [195], in which a
segment of the intestine is cut off from animal following laparotomy
and then everted and used to evaluate drug absorption under certain
conditions. In this model, adjustments and improvements have been
performed to increase the viability of tissue, and maintain intact mu-
cosal epithelium that mimics the in vivo conditions. The advantages of
this model are a relatively large surface area accessible for absorption
and the presence of a mucus layer. Nonetheless, the tissue viability is
one of the limiting parameters [196,197]. The everted gut sac model is
used to assess the intestinal permeability of SLNs and their payload
drugs (summarized in Table 5). For example, the in vitro permeability of
sulpiride after inclusion into SLNs was enhanced to 11.7 mg/cm2 in
comparison with the drug (6.6 mg/cm2), which can be explained by the
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enhancement of the surface area, leading to a higher rate of diffusion
[198]. The performance of SLNs for promotion of praziquantel and
insulin efficacy were also elucidated [91,199]. In a recent study, greater
permeation was noted at each time point of the permeability study of
artesunate-encapsulated SLNs [200].

5.1.4. Ussing chamber

Ussing chamber has been used as an intestinal membrane model to
evaluate the permeation efficiency of NPs [184]. Recently, isolated
intestinal mucosa has been used to be mounted in Ussing chamber as a
natural membrane model to assess the absorption efficiency of NPs.
This technique is helpful to overcome the pitfalls of monolayer model
that lack the three-dimensional (3D) macrostructure necessary for cell
differentiation. Although these techniques provide accurate measure-
ment tools of intestinal absorption, they have some limitations. The
isolated intestinal segment is rapidly lost, so it is required to repeat
experiments to obtain fresh tissue. Subsequently, large numbers of an-
imals are used. However, there is a paucity of information about per-
meability studies of SLNs by using the Ussing chamber technique. Fan
et al. [184] developed salmon calcitonin-loaded SLNs interfused with
peptide ligand CSKSSDYQC, which showed an affinity with goblet cells
in the epithelium, or IRQRRRR, which is a cell-penetrating peptide. The
permeability of salmon calcitonin measured by Ussing chamber tech-
nique showed that the apparent permeability coefficients of salmon
calcitonin-SLNs, CSK and IRQ-SLNs were 2.1, 5.9 and 4.7-fold greater
than that of salmon calcitonin solution.

5.1.5. 3D culture model

At the moment, new cell culture models have been developed to
provide a more physiologically microenvironment mimicking the nat-
ural extracellular matrix, such as a 3D culture model [62,201]. In 3D
culture model, cells are completely embedded in extracellular matrix
that maintain cell differentiation, communication between cells and
hemostasis [202,203]. As compared to two dimensional (2D) culture
model, 3D model induces a more physiologically relevant environment.
However, efforts have been made to improve upon 2D Caco-2 cell
culture and create a coculture of cells with fibroblast cells to imitate the
intact intestine [204]. Up to now, microfluidic organs-on-chip is pro-
posed to be the most advanced in vivo-like culture systems. Gut-on-a-
chip technology strategy has also been used with Caco-2 cells [205].
Furthermore, cellular mucin expression from Caco-2 cell is increased
when 3D collagen villi scaffolds have been used for Caco-2 cell culture
type [206]. In recent times, the 3D culture model has been adopted and
become valuable techniques to provide a more physiologically con-
sistent micro-environment imitating the natural cellular and extra-
cellular components of intact intestine. This innovative strategy may
propose a further evidence to design more efficient orally administered
NPs. Nevertheless, this is an under explored area and only a few studies
to date have used such 3D culture models to evaluate drug delivery

Table 4
Cellular uptake and transport mechanism studies of SLNs across MDCK cell monolayer model.
Study method Formulation Lipid type Modified Transport mechanism Year Ref.
surfaces
Cellular uptake studies ODA-FITC labeled SLNs GMS - -Micropinocytosis -Caveolae and clathrin-mediated pathways 2014 [192]
Transport studies SLNs GMP/* PEG -SA 2000 -Vesicle-mediated mechanism. 2016 [193]
GMS/”
GMB*
Permeability studies Carbamazepine-SLNs Myristate -Enhanced permeability of carbamazepine with a confidence of 95 2018 [194]
%
Permeability studies Magnesium lithospermate B- GMS PEG-SAY, 2000 -Enhanced cellular transport and improved diffusion through the 2018 [96]

PEGylated SLNs

mucus barriers by PEGylation

Glycerol monopalmitate.

Glycerol monostearate.

Glycerin monobehenate.
polyethylene glycol monostearate.

=YY
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Table 5
Absorption evaluation of SLNs using in vitro everted gut sac technique.
Study method Active ingredient Formulation Average size (nm) Findings Year Ref.
Intestinal permeability study in Doxorubicin PEGylated SLNs 153 -—160 -Increased permeability 2013 [70]
rats -Higher penetration to mucous secretion
Sulpiride SLNs 148—-299 -Enhanced permeability 2014 [198]
Praziquantel SLNs 506 -Increased activity against the parasites located in mesenteric 2014 [199]
veins of intestine
Insulin SLNs 99 -Improved permeability of insulin by 2-fold 2016 [91]
Artesunate SLNs 1109 -Enhanced permeability and therapeutic efficacy 2018 [200]

strategies. In the future, further trials, which take novel models of drug
delivery into account, will need to be performed to confirm the ap-
plicability of drugs delivered via SLNs.

5.2. In situ perfusion method

In situ perfusion of intestinal segments is generally used to examine
the prediction of intestinal permeability and transport pharmacoki-
netics of drug molecules. The major virtue of the in situ system com-
pared to the in vitro approach is the presence of normal neurovascular
structure suppling intestinal segments [207]. Nevertheless, the use of
single pass intestinal perfusion method is strictly limited because this
method primarily depends on the luminal disappearance of ingredient
as an indicator of absorption, but the rate of decrease of concentration
in the perfusate does not always reflect the rate of uptake of the drug
into the blood, especially for ingredients undergoing pre-absorption or
luminal metabolism. However, a considerable number of studies have
used in situ intestinal absorption method for assessment of SLNs per-
meability. One notable example, Li et al. used SLNs as a vehicle for oral
delivery of quercetin [208]. It was validated that quercetin loaded SLNs
with a mean diameter of 155.3 nm and encapsulation of 91 % could be
absorbed from duodenum, jejunum, ileum and colon segment of in-
testine. The absorption of SLNs mainly occurred through ileum and
colon segments, and thus SLNs can be absorbed as nanoparticle phase
through Peyer's patches and M cells in the ileum and colon. Similarly,
the absorption of simvastatin incorporated SLNs was increased and
varied with the site of the intestinal segments [209]. It is more inter-
esting that SLNs improved permeability of y-tocotrienol by 10-fold,
compared to mixed micelles [47]. The in situ rat intestine perfusion
study demonstrated a 3-fold increase of SLNs encapsulating lumefan-
trine permeation compared to lumefantrine solution [30]. Recently,
SLNs were developed for improving intestinal permeability of borte-
zomib by using hot oil-in-water emulsification method [210]. The re-
gional intestinal effective permeability (P.g) value of glycerol mono-
stearate SLNs with average particle size of 95 nm was enhanced by 3-
fold increase than free control. Consistently, the permeability coeffi-
cient values were tripled when nebivolol was encapsulated in SLNs and
doubled when the pure drug was used separately with a blank SLNs
[211].

5.3. In vivo methods

Despite the fact that in vivo methods are highly resource-intensive,
these experimental approaches are fundamental in drug industry to
evaluate the drug’s pharmacokinetics and pharmacodynamics char-
acteristics. The principal advantages of the in vivo experimental models
are the complete incorporation of the dynamic components of the
mesenteric blood circulation, the mucus layer and all the other factors
that can affect drug dissolution and absorption. However, when
choosing an animal model, the physiological and biochemical simila-
rities between the animal model and humans should be considered. The
most common animals used in drug testing are mice, rats, dogs, and
non-human primates [212]. In the rat model, the similarity of drug
transporters as related to humans provides good prediction values for
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oral drug absorption [213]. Encapsulation of various drugs into lipid
based nanocarrier has attracted much more interest to modify drug
release, absorption and permeability for the benefit of improving drug
efficacy and safety and thus better outcomes. Various research studies
have been focused on the in vivo oral drug delivery field [214,215]. For
instance, the oral delivery of geniposide-SLNs in rats showed a sig-
nificant increase of C,,.x and enhancement of relative bioavailability
more than 50 times, compared to drug solution. Additionally, higher
tissue concentration in liver, heart and brain indicated the pharmaco-
logical role of geniposide-SLNs for treatment of hepatic and cardio-
vascular disease [32]. Puerarin, an effective drug in treatment of car-
diovascular disorder, loaded into SLNs and administered orally in rats
was reported to show a 3-fold increase in oral bioavailability compared
to puerarin solution. Higher tissue concentration was recorded espe-
cially in the predilection organs such as the heart and brain [98]. In-
clusion of olmesartan medoxomil in SLNs revealed 2.3-fold enhance-
ment in relative bioavailability compared to plain drug, after oral
administration in rats [100,101]. A significant amelioration of oral
bioavailability of apomorphine 13-fold was found after SLNs in-
corporation. Further, In the rat model of Parkinson’s disease induced by
6-hydroxydopamine, the contralateral rotation number greatly in-
creased from 20 to 115 following oral SLNs applications [102]. Narala
and Veerabrahma evaluated the oral bioavailability of SLNs containing
quetiapine with average particle size and encapsulation capacity of 175
nm and 92 %, respectively. The in vivo study in rats exhibited a 3.7
times increase in oral bioavailability by SLNs [103]. Incorporation of
zaleplon in SLNs showed a 2.6-fold improvement in bioavailability
following oral administration in rats [104]. Linagliptin is a DPP-4 in-
hibitor used to treat type II diabetes. An enteric coating of linagliptin
with pH sensitive polymer showed higher bioavailability more than 1.9-
fold compared to free drug in rats. The Cpax and Ty values of SLNs
were 5.5 mcg/mL and 16 h higher than those of the free drug [105].

6. Challenge and future prospective of SLNs for oral delivery

Even though the various potential benefits of oral SLNs as an at-
tractive route for oral drug delivery, several challenges need to be re-
solved for better application in the future. The current defects of some
fabricated SLNs itself, including the relatively low encapsulation effi-
ciency and loading capacity as well as a high initial burst release,
should be overcome. Strategies have been exploited to tackle these
problems associated with SLNs via modifying the preparation tech-
nology and the formulation excipients. Entrapment efficiency and
controlled release of formulations can be achieved through selecting
suitable lipid matrices as triglycerides along with the proper con-
centration of emulsifiers. Recent developments in SLNs have led to the
surface modified SLNs that may overcome the limitation for oral de-
livery of hydrophilic and phytoactive compounds. The major challenges
are that various natural barriers of the GI tract hinder the cellular up-
take or traversal of nanocarriers. The low gastric pH may destabilize
and aggregate the SLNs. However, in vitro optimizing the SLNs mixture
and surfactant for each lipid is needed to tackle this problem. The
biological nature of the GI tract together with its content provide sev-
eral natural barriers for cellular transversal of nanocarriers leading to
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low accessibility and absorption of the drug molecules. The nano-
carriers supposed to pass through paracellular or transcellular pathways
to reach the blood stream. The paracellular route is initiated through
TJs while transcellular is conducted via various receptor and non-re-
ceptor mediated endocytosis. After cellular uptake, the vast majority
gets passed along the endolysosomal trafficking pathway leading to
degrade most of encapsulated drugs. So, the potential challenges of
drug transcellular trafficking are to mitigate or completely avoid the
endolysosomal pathway or to elicit endosomes or lysosomes to fuse
with the cell membrane releasing nanoparticle or nanocarriers escape
from the endolysosomal system to get released from the cell again.
Moreover, electrostatic repulsion that occurred between the negatively
charged surface of SLNs and negatively charged intestinal mucus
membranes impedes the availability of SLNs to these membranes and
some SLNs can also become trapped by mucus due to their hydrophobic
feature. mucus permeation strategy via unique surface modifications
has been commonly employed and engineered to enhance the nano-
carrier penetration of mucus barrier, cellular uptake and bioavail-
ability. Pragmatic SLNs with peptide ligands can provide a key solution
to enhance the transport of protein drugs across intestinal barriers. It is
still unclear that how much proportion of oral nanoparticle could be
absorbed into the body in the intact formulation. What properties of
SLNs to be easily absorbed and the relation of their loaded drug oral
bioavailability with SLNs absorption have not been reported. All above
challenges hindered the progress of SLNs as an effective oral drug de-
livery system.

A few years ago, great in vivo advances in SLNs were revealed to
improve oral absorption of poorly absorbed drugs. A relative attractive
research gained high levels of interest, but there is a paucity of statistics
about how oral absorbability is enhanced via SLNs. Subsequently, a
variety of in vitro cell models have been developed to assess the cellular
SLNs uptake mechanisms using various (2D) culture models. At the
moment, the greater number of in vitro investigations are undertaken
these types of cells which cultured on 2D condition. Such in vitro models
do not exactly imitate the 3D in vivo environment due to lack of in-
teractions and communications between cells which are crucial for
underlying intracellular trafficking signals. Nonetheless, the transport
mechanism of SLNs has not yet been studied across 3D culture models
which proposed to be the most advanced in vivo-like culture systems. In
the future, more trends should be attracted to these models which open
the doors to fully authenticate the transport and release kinetics of SLNs
through the intestinal epithelium. At some point, it is necessary to
adopt contemporary technological methods to shed a new light on the
interaction of SLNs with biological tissues and proteins present in GI
tract fluids and its implications for transcellular transcytosis. This bio-
logical fluid nanoparticle interaction is suggested to be new and most
attractive challenges for the development of nanocarriers for oral drug
delivery. In addition, we propose that further research should be tar-
geted to enhance nanodrug penetration of intestinal mucus, to achieve
an innovative uptake via enterocytes and M cells. The signals produced
by lymphocytes, responsible for M cell formation, are required to de-
scribe the mechanisms mediating transcytosis and to analyze the cel-
lular machinery mediating bioactive molecule translocation through M
cells. Furthermore, it is a vital issue for future research to further in-
vestigate the cellular uptake processes using gut endothelial cell lines
and linking it with transcytosis efficiency. More broadly, the develop-
ment of reliable NPs proteins bioconjugations strategies and triggering
endolysosomal escape is essential to promote transcytosis efficiency and
subsequent higher exocytosis rate in both intestinal epithelial and blood
endothelial cells. Taken together, this will enhance therapeutic indices
and feasibility of medical applications.

7. Summary

Long ago, many advances in SLNs formulations had been shown to
enhance oral absorption due to its unique advantages, including
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increased solubility, improved stability, enhanced permeability and
absorption, controlled drug release, site-specific targeting, and minimal
side effects. We summarize all transport model developments for ab-
sorption of SLNs across GI tract. Up to date, few intensive studies have
been performed to investigate the transport mechanisms of various
SLNs across the GI epithelial cell monolayer. The endocytosis or
transcytosis of SLNs is very intricate involving several complex traf-
ficking pathways through biological tissue. Therefore, the ultimate but
challenging goal referring to study and explore the molecular me-
chanisms of various SLNs which will assist us in designing of ingenious
nanocarrier with superior outcomes. Recently and within the next few
years, in vitro cell models are likely to become an important component
and a valuable evidence for cellular permeation prediction of NPs. In
future, it is vital to adopt modern technological methods to verify the
transport mechanism of SLNs across the intestinal epithelium. This will
lay a foundation to create a new paradigm of therapeutic formulations
and interventions.
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